Skip to main content
Log in

Cu/TiO2 Photocatalysts for CO2 Reduction: Structure and Evolution of the Cocatalyst Active Form

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Extensive work on a Cu-modified TiO2 photocatalyst for CO2 reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV–vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu0, Cu+, and Cu2+), the content of which depends on the TiO2 calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO2 calcined at 700 °C and modified with 5 wt% copper, the activity of which is 22 µmol/(h·gcat) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO2 was gradually converted into Cu2O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO2 did not undergo any transformation during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Velvizhi G, Jacqueline PJ, Shetti NP et al (2023) Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J Environ Manage 345:118527

    Article  Google Scholar 

  2. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change: a review. Energy Policy 52:797–809

    Article  Google Scholar 

  3. Lamb WF, Wiedmann T, Pongratz J et al (2021) A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett 16(7):073005

    Article  Google Scholar 

  4. Kumar A, Singh P, Raizada P et al (2022) Impact of COVID-19 on greenhouse gases emissions: a critical review. Sci Total Environ 806(Pt 1):150349. https://doi.org/10.1016/j.scitotenv.2021.150349

    Article  Google Scholar 

  5. Shi W, Yan C, Ren Z et al (2023) Review on the development of marine floating photovoltaic systems. Ocean Eng 286:115560

    Article  Google Scholar 

  6. Seneviratne SI, Donat MG, Pitman AJ et al (2016) Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529(7587):477–483

    Article  Google Scholar 

  7. Morseletto P, Biermann F, Pattberg P (2017) Governing by targets: reductio ad unum and evolution of the two-degree climate target. Int Environ Agreem Polit Law Econ 17(5):655–676

    Google Scholar 

  8. Murali G, Iwamura T, Shai M et al (2023) Future temperature extremes threaten land vertebrates. Nature 615(7952):461–467

    Article  Google Scholar 

  9. Steeneveldt R, Berger B, Torp TA (2006) CO2 capture and storage. Chem Eng Res Des 84(9):739–763

    Article  Google Scholar 

  10. Anwar MN, Fayyaz A, Sohail NF et al (2018) CO2 capture and storage: a way forward for sustainable environment. J Environ Manag 226:131–144

    Article  Google Scholar 

  11. Ma J, Miao TJ, Tang J (2022) Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chem Soc Rev 51(14):5777–5794

    Article  Google Scholar 

  12. Fang S, Rahaman M, Bharti J et al (2023) Photocatalytic CO2 reduction. Nat Rev Meth Primers 3:61

    Article  Google Scholar 

  13. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189

    Article  Google Scholar 

  14. Leong S, Razmjou A, Wang K et al (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184

    Article  Google Scholar 

  15. Li Z, Wang S, Wu J et al (2022) Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew Sustain Energy Rev 156:111980

    Article  Google Scholar 

  16. Du S, Lian J, Zhang F (2022) Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications. Trans Tianjin Univ 28(1):33–52

    Article  Google Scholar 

  17. Nur ASM, Sultana M, Mondal A et al (2022) A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J Water Process Eng 47:102728

    Article  Google Scholar 

  18. Wang J, Jing L, Xue L et al (2008) Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater 160(1):208–212

    Article  Google Scholar 

  19. Jing L, Wang J, Qu Y et al (2009) Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity. Appl Surf Sci 256(3):657–663

    Article  Google Scholar 

  20. Goei R, Lim TT (2014) Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Res 59:207–218

    Article  Google Scholar 

  21. Meng A, Zhang L, Cheng B et al (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660

    Article  Google Scholar 

  22. Kozlova EA, Parmon VN (2017) Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev 86(9):870–906

    Article  Google Scholar 

  23. Esrafili A, Salimi M, Jonidi Jafari A et al (2022) Pt-based TiO2 photocatalytic systems: a systematic review. J Mol Liq 352:118685

    Article  Google Scholar 

  24. Anderson PA (1949) The work function of copper. Phys Rev 76(3):388–390

    Article  Google Scholar 

  25. Mitchell E, Mitchell J (1951) The work functions of copper, silver and aluminium. Proc R Soc Lond A 210(1100):70–84. https://doi.org/10.1098/rspa.1951.0231

    Article  Google Scholar 

  26. Xu R, Xu H, Ning S et al (2020) Coupling of Cu catalyst and phosphonated Ru complex light absorber with TiO2 as bridge to achieve superior visible light CO2 photoreduction. Trans Tianjin Univ 26(6):470–478

    Article  Google Scholar 

  27. Aman N, Mishra T, Hait J et al (2011) Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst. J Hazard Mater 186(1):360–366

    Article  Google Scholar 

  28. Zhai Q, Xie S, Fan W et al (2013) Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew Chem Int Ed Engl 52(22):5776–5779

    Article  Google Scholar 

  29. Wang W, Deng C, Xie S et al (2021) Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J Am Chem Soc 143(7):2984–2993

    Article  Google Scholar 

  30. Kurenkova AY, Kremneva AM, Saraev AA et al (2021) Influence of thermal activation of titania on photoreactivity of Pt/TiO2 in hydrogen production. Catal Lett 151(3):748–754

    Article  Google Scholar 

  31. Kurenkova AY, Yakovleva AY, Saraev AA et al (2022) Copper-modified titania-based photocatalysts for the efficient hydrogen production under UV and visible light from aqueous solutions of glycerol. Nanomaterials 12(18):3106

    Article  Google Scholar 

  32. Fairley N, Fernandez V, Richard-Plouet M et al (2021) Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl Surf Sci Adv 5:100112

    Article  Google Scholar 

  33. Chernyshov AA, Veligzhanin AA, Zubavichus YV (2009) Structural materials science end-station at the kurchatov synchrotron radiation source: recent instrumentation upgrades and experimental results. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip 603(1–2):95–98

    Article  Google Scholar 

  34. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541

    Article  Google Scholar 

  35. Saraev AA, Kurenkova AY, Gerasimov EY et al (2022) Broadening the action spectrum of TiO2-based photocatalysts to visible region by substituting platinum with copper. Nanomaterials 12(9):1584

    Article  Google Scholar 

  36. Markovskaya DV, Zhurenok AV, Kurenkova AY et al (2020) New titania-based photocatalysts for hydrogen production from aqueous-alcoholic solutions of methylene blue. RSC Adv 10(56):34137–34148

    Article  Google Scholar 

  37. Sawicka-Chudy P, Sibiński M, Wisz G et al (2018) Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS. J Phys: Conf Ser 1033:012002

    Google Scholar 

  38. Basnet P, Anderson E, Zhao Y (2019) Hybrid CuxO–TiO2 nanopowders prepared by ball milling for solar energy conversion and visible-light-induced wastewater treatment. ACS Appl Nano Mater 2(4):2446–2455

    Article  Google Scholar 

  39. Wang H, Xu JZ, Zhu JJ et al (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244(1):88–94

    Article  Google Scholar 

  40. Balamurugan B, Aruna I, Mehta BR et al (2004) Size-dependent conductivity-type inversion in Cu2O nanoparticles. Phys Rev B 69(16):165419

    Article  Google Scholar 

  41. Suzuki K, Tanaka N, Ando A et al (2011) Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method. J Am Ceram Soc 94(8):2379–2385

    Article  Google Scholar 

  42. Karthikeyan S, Kumar S, Durndell LJ et al (2018) Size-dependent visible light photocatalytic performance of Cu2O nanocubes. ChemCatChem 10(16):3554–3563

    Article  Google Scholar 

  43. Pedersen DB, Wang S (2007) Surface plasmon resonance spectra of 2.8 ± 0.5 nm diameter copper nanoparticles in both near and far fields. J Phys Chem C 111(47):17493–17499

    Article  Google Scholar 

  44. Guo X, Hao C, Jin G et al (2014) Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light. Angew Chem Int Ed 53(7):1973–1977

    Article  Google Scholar 

  45. Wöllner A, Lange F, Schmelz H et al (1993) Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl Catal A Gen 94(2):181–203

    Article  Google Scholar 

  46. Fedorov A, Saraev A, Kremneva A et al (2020) Kinetic and mechanistic study of CO oxidation over nanocomposite Cu−Fe−Al oxide catalysts. ChemCatChem 12(19):4911–4921

    Article  Google Scholar 

  47. Fedorov AV, Kukushkin RG, Yeletsky PM et al (2020) Temperature-programmed reduction of model CuO, NiO and mixed CuO–NiO catalysts with hydrogen. J Alloys Compd 844:156135

    Article  Google Scholar 

  48. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47(13):2208–2213

    Article  Google Scholar 

  49. Bukhtiyarov VI, Kaichev VV, Prosvirin IP (2005) X-ray photoelectron spectroscopy as a tool for in situ study of the mechanisms of heterogeneous catalytic reactions. Top Catal 32(1):3–15

    Article  Google Scholar 

  50. Moretti G (1995) Auger parameter and Wagner plot in the characterization of chemical states: initial and final state effects. J Electron Spectrosc Relat Phenom 76:365–370

    Article  Google Scholar 

  51. Strohmeier B (1985) Surface spectroscopic characterization of Cu/Al2O3 catalysts. J Catal 94(2):514–530

    Article  Google Scholar 

  52. Poulston S, Parlett PM, Stone P et al (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24(12):811–820

    Article  Google Scholar 

  53. Batista J, Pintar A, Mandrino D et al (2001) XPS and TPR examinations of γ-alumina-supported Pd–Cu catalysts. Appl Catal A Gen 206(1):113–124

    Article  Google Scholar 

  54. Richter M, Fait MJG, Eckelt R et al (2007) Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal 245(1):11–24

    Article  Google Scholar 

  55. Kremneva AM, Fedorov AV, Saraev AA et al (2021) In situ X-ray absorption spectroscopy studies of carbon monoxide oxidation in the presence of nanocomposite Cu–Fe–Al oxide catalysts. Kinet Catal 62(1):160–171

    Article  Google Scholar 

  56. Ghodselahi T, Vesaghi MA, Shafiekhani A et al (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730–2734

    Article  Google Scholar 

  57. Foucher AC, Yang S, Rosen DJ et al (2022) Synthesis and characterization of core-shell Cu–Ru, Cu–Rh, and Cu–Ir nanoparticles. J Am Chem Soc 144(17):7919–7928

    Article  Google Scholar 

Download references

Acknowledgements

The XPS and HR TEM experiments were performed using the facilities of the shared research center “National Center of Investigation of Catalysts” at Boreskov Institute of Catalysis.

This study was supported by Russian Science Foundation (No. #21-73-10235)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Saraev.

Ethics declarations

Conflicts of interest

All authors declare that there is no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraev, A.A., Kurenkova, A.Y., Mishchenko, D.D. et al. Cu/TiO2 Photocatalysts for CO2 Reduction: Structure and Evolution of the Cocatalyst Active Form. Trans. Tianjin Univ. 30, 140–151 (2024). https://doi.org/10.1007/s12209-024-00384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-024-00384-3

Keywords

Navigation