Skip to main content
Log in

A Unified View of Carbon Neutrality: Solar-Driven Selective Upcycling of Waste Plastics

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

With the rapid development of plastic production and consumption globally, the amount of post-consumer plastic waste has reached levels that have posed environmental threats. Considering the substantial CO2 emissions throughout the plastic lifecycle from material production to its disposal, photocatalysis is considered a promising strategy for effective plastic recycling and upcycling. It can upgrade plastics into value-added products under mild conditions using solar energy, realizing zero carbon emissions. In this paper, we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products, including both degradation into CO2 followed by reformation and direct reformation into high-value-added products. Finally, the current applications of transforming plastic waste into fuels, chemicals, and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented, facilitating the realization of carbon neutrality and zero plastic waste.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [7]. Copyright © 2023, Springer Nature

Fig. 2

Reproduced with permission from Ref. [8]. Copyright © 2023, Wiley–VCH

Fig. 3
Fig. 4

Reproduced with permission from Ref. [51]. Copyright © 2023, Elsevier

Fig. 5
Fig. 6

Reproduced with permission from Ref. [57]. Copyright © 2020, Wiley–VCH

Fig. 7

Reproduced with permission from Ref. [61]. Copyright © 2022, © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd

Fig. 8

Reproduced with permission from Ref. [63]. Copyright © 2022, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [65]. Copyright © 2022, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [7]. Copyright © 2023, Springer Nature

Fig. 11
Fig. 12

Reproduced with permission from Ref. [74]. Copyright © 2023, Elsevier

Fig. 13

Reproduced with permission from Ref. [75]. Copyright © 2023, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [76]. Copyright © 2023, Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [77]. Copyright © 2023, Springer Nature

Fig. 16

Reproduced with permission from Ref. [85]. Copyright © 2022, Elsevier

Fig. 17

Reproduced with permission from Ref. [90]. Copyright © 2023, American Chemical Society

Fig. 18

Source data are provided as a Source Data file. c Conversion of 500 mg of plastic pellets in 20 reaction cycles, reaction conditions: 200 mg g-C3N4, 500 mg pellets, 40 mL acetonitrile, 1 MPa O2, irradiated by 300 W xenon lamp at 150 °C for 8 h in each cycle. The solution is released after each cycle, and the pure solvent is injected into the autoclave. d Catalytic performance of polystyrene with different pretreatment, reaction conditions: 50 mg g-C3N4, 20 mg polystyrene, 30 mL acetonitrile, irradiated by 300 W xenon lamp at 150 °C for 8 h. PS-O was produced from thermal treatment at 150 °C in acetonitrile with O2, PS-1 and PS-2 were obtained from air treatment at 220 °C and 300 °C, respectively, and PS-3 was produced from pyrolysis at 350 °C in N2. e Selectivity and activity of polystyrene oxidation reaction at different WHSVs, reaction conditions: 100 mg g-C3N4, 30 mL acetonitrile, irradiated by 300 W xenon lamp at 120 °C, polystyrene solution (~ 0.3 mg/mL in acetonitrile) was pumped into the reactor by a high-pressure syringe pump at different rates, 10 mL reaction solution was drained out manually when the PS solution pumped in reached the same volume. Reproduced with permission from Ref. [19]. Copyright © 2022, Springer Nature

Fig. 19

Reproduced with permission from Ref. [95]. Copyright © 2022, American Chemical Society

Fig. 20

Reproduced with permission from Ref. [98]. Copyright © 2023, American Chemical Society

Fig. 21

Reproduced with permission from Ref. [101]. Copyright © 2019, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Stubbins A, Law KL, Muñoz SE et al (2021) Plastics in the earth system. Science 373(6550):51–55

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Santos RG, Machovsky-Capuska GE, Andrades R (2021) Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373(6550):56–60

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Liu LZ, Wang ZL, Zhang JF et al (2023) Tunable interfacial charge transfer in a 2D–2D composite for efficient visible-light-driven CO2 conversion. Adv Mater 35(26):e2300643

    Article  PubMed  Google Scholar 

  4. Chen JL, Zhang LY, Wang L et al (2023) Toward carbon neutrality: selective conversion of waste plastics into value-added chemicals. Matter 6(10):3322–3347

    Article  CAS  Google Scholar 

  5. Yue SA, Wang PF, Yu BN et al (2023) From plastic waste to treasure: selective upcycling through catalytic technologies. Adv Energy Mater 13(41):2302008

    Article  Google Scholar 

  6. Lee K, Jing YX, Wang YQ et al (2022) A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 6(9):635–652

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kwon D (2023) Three ways to solve the plastics pollution crisis. Nature 616(7956):234–237

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wang L, Jiang S, Gui WK et al (2023) Photocatalytic upcycling of plastic waste: mechanism, integrating modus, and selectivity. Small Struct 4(10):2300142

    Article  CAS  Google Scholar 

  9. Kang SL, Sun T, Ma YX et al (2023) Artificial photosynthesis bringing new vigor into plastic wastes. SmartMat 4(4):e1202

    Article  Google Scholar 

  10. Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500(7462):287–295

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Zhang MQ, Wang M, Sun B et al (2022) Catalytic strategies for upvaluing plastic wastes. Chem 8(11):2912–2923

    Article  CAS  Google Scholar 

  12. Uekert T, Pichler CM, Schubert T et al (2020) Solar-driven reforming of solid waste for a sustainable future. Nat Sustain 4(5):383–391

    Article  Google Scholar 

  13. Meng JL, Zhou YL, Li DJ et al (2023) Degradation of plastic wastes to commercial chemicals and monomers under visible light. Sci Bull 68(14):1522–1530

    Article  CAS  Google Scholar 

  14. Uheida A, Mejía HG, Abdel-Rehim M et al (2021) Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J Hazard Mater 406:124299

    Article  CAS  PubMed  Google Scholar 

  15. Sanwald KE, Berto TF, Jentys A et al (2018) Kinetic coupling of water splitting and photoreforming on SrTiO3-based photocatalysts. ACS Catal 8(4):2902–2913

    Article  CAS  Google Scholar 

  16. Eisenreich F (2023) Photocatalysis as an effective tool for upcycling polymers into value-added molecules. Angew Chem Int Ed 62(29):e202301303

    Article  CAS  Google Scholar 

  17. Cao RC, Xiao DQ, Wang M et al (2024) Solar-driven photocatalysis for recycling and upcycling plastics. Appl Catal B 341:123357

    Article  CAS  Google Scholar 

  18. Liu SB, Kots PA, Vance BC et al (2021) Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv 7(17):eabf8283

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Cao RC, Zhang MQ, Hu CQ et al (2022) Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat Commun 13(1):4809

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Dharmaraj S, Ashokkumar V, Pandiyan R et al (2021) Pyrolysis: an effective technique for degradation of COVID-19 medical wastes. Chemosphere 275:130092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tejaswini MSSR, Pathak P, Ramkrishna S et al (2022) A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Sci Total Environ 825:153973

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Korley LTJ, Epps TH 3rd, Helms BA et al (2021) Toward polymer upcycling-adding value and tackling circularity. Science 373(6550):66–69

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Jehanno C, Alty JW, Roosen M et al (2022) Critical advances and future opportunities in upcycling commodity polymers. Nature 603(7903):803–814

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Tournier V, Duquesne S, Guillamot F et al (2023) Enzymes’ power for plastics degradation. Chem Rev 123(9):5612–5701

    Article  CAS  PubMed  Google Scholar 

  25. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54(11):3210–3215

    Article  CAS  Google Scholar 

  26. Narancic T, Verstichel S, Reddy Chaganti S et al (2018) Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a Panacea for plastic pollution. Environ Sci Technol 52(18):10441–10452

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Li RZ, Zhang ZD, Liang XA et al (2023) Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J Am Chem Soc 145(29):16218–16227

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Wang XC, Li QY et al (2022) Photothermal catalytic polyester upcycling over cobalt single-site catalyst. Adv Funct Mater 33(2):2210283

    Article  Google Scholar 

  29. Coates GW, Getzler YDYL (2020) Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 5(7):501–516

    Article  CAS  ADS  Google Scholar 

  30. Xie GC, Zhang K, Guo BD et al (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25(28):3820–3839

    Article  CAS  PubMed  Google Scholar 

  31. Chen SS, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2(10):1–17

    Article  CAS  Google Scholar 

  32. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48(7):2109–2125

    Article  CAS  PubMed  Google Scholar 

  33. Chen FY, Sun WM, Zhang DP et al (2022) Identification of the stable Pt single sites in the environment of ions: from mechanism to design principle. Adv Mater 34(26):e2108504

    Article  PubMed  Google Scholar 

  34. Su LN, Wang PF, Wang JH et al (2021) Pt–Cu interaction induced construction of single Pt sites for synchronous electron capture and transfer in photocatalysis. Adv Funct Mater 31(47):2104343

    Article  CAS  Google Scholar 

  35. Zhang T, Zhao ZY, Zhang DP et al (2023) Superexchange-induced Pt–O–Ti3+ site on single photocatalyst for efficient H2 production with organics degradation in wastewater. Proc Natl Acad Sci USA 120(23):e2302873120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang DP, Li YX, Wang PF et al (2023) Regulating spin polarization through cationic vacancy defects in Bi4Ti3O12 for enhanced molecular oxygen activation. Angew Chem Int Ed 62(23):e202303807

    Article  CAS  Google Scholar 

  37. Xu JY, Li WL, Liu WX et al (2022) Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity. Angew Chem Int Ed Engl 61(45):e202212243

    Article  CAS  PubMed  Google Scholar 

  38. Liu D, Yang XA, Chen PY et al (2023) Rational design of PDI-based linear conjugated polymers for highly effective and long-term photocatalytic oxygen evolution. Adv Mater 35(25):e2300655

    Article  PubMed  Google Scholar 

  39. Su LN, Wang PF, Li MM et al (2023) Synergistic enhancement of photocatalytic molecular oxygen activation by nitrogen defect and interfacial photoelectron transfer over Z-scheme α-Fe2O3/g-C3N4 heterojunction. Appl Catal B 335:122890

    Article  CAS  Google Scholar 

  40. Gazi S, Đokić M, Moeljadi AMP et al (2017) Kinetics and DFT studies of photoredox carbon–carbon bond cleavage reactions by molecular vanadium catalysts under ambient conditions. ACS Catal 7(7):4682–4691

    Article  CAS  Google Scholar 

  41. Gazi S, Đokić M, Chin KF et al (2019) Visible light–driven cascade carbon–carbon bond scission for organic transformations and plastics recycling. Adv Sci 6(24):1902020

    Article  CAS  Google Scholar 

  42. Zhou BW, Ma YJ, Ou PF et al (2023) Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat Catal 6(11):987–995

    Article  CAS  Google Scholar 

  43. Wang G, Chen Z, Wang T et al (2022) P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew Chem Int Ed 61(40):e202210789

    Article  CAS  Google Scholar 

  44. Jin N, Sun YL, Shi WW et al (2023) Type-I CdS/ZnS core/shell quantum dot-gold heterostructural nanocrystals for enhanced photocatalytic hydrogen generation. J Am Chem Soc 145(40):21886–21896

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W, Kim S, Wahl L et al (2023) Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379(6634):807–811

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Ellis LD, Rorrer NA, Sullivan KP et al (2021) Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 4(7):539–556

    Article  CAS  Google Scholar 

  47. Sheldon RA, Norton M (2020) Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chem 22(19):6310–6322

    Article  CAS  Google Scholar 

  48. Cabernard L, Pfister S, Oberschelp C et al (2021) Growing environmental footprint of plastics driven by coal combustion. Nat Sustain 5(2):139–148

    Article  Google Scholar 

  49. Liu F, Zhuang XJ, Du ZF et al (2022) Enhanced photocatalytic performance by polarizing ferroelectric KNbO3 for degradation of plastic wastes under mild conditions. Appl Catal B 318:121897

    Article  CAS  Google Scholar 

  50. Wan Y, Wang HJ, Liu JJ et al (2023) Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate. J Hazard Mater 452:131375

    Article  CAS  PubMed  Google Scholar 

  51. Gou N, Yang WY, Gao S et al (2023) Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation. J Hazard Mater 447:130795

    Article  CAS  PubMed  Google Scholar 

  52. Youns YT, Manshad AK, Ali JA (2023) Sustainable aspects behind the application of nanotechnology in CO2 sequestration. Fuel 349:128680

    Article  CAS  Google Scholar 

  53. Ouyang ZL, Yang Y, Zhang C et al (2021) Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals. J Mater Chem A 9(23):13402–13441

    Article  CAS  Google Scholar 

  54. Zhang SB, Li M, Zuo ZY et al (2023) Recent advances in plastic recycling and upgrading under mild conditions. Green Chem 25(18):6949–6970

    Article  CAS  Google Scholar 

  55. Rao ZQ, Wang KW, Cao YH et al (2023) Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2. J Am Chem Soc 145:24625–24635

    CAS  Google Scholar 

  56. Tavasoli A, Gouda A, Zähringer T et al (2023) Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure. Nat Commun 14(1):1–8

    Google Scholar 

  57. Jiao XC, Zheng K, Chen QX et al (2020) Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew Chem Int Ed Engl 59(36):15497–15501

    Article  CAS  PubMed  Google Scholar 

  58. Yan N (2022) Recycling plastic using a hybrid process. Science 378(6616):132–133

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Clarke RW, Sandmeier T, Franklin KA et al (2023) Dynamic crosslinking compatibilizes immiscible mixed plastics. Nature 616(7958):731–739

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Sullivan KP, Werner AZ, Ramirez KJ et al (2022) Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378(6616):207–211

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Xu JQ, Jiao XC, Zheng K et al (2022) Plastics-to-syngas photocatalysed by Co–Ga2O3 nanosheets. Natl Sci Rev 9(9):nwac011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng K, Wu Y, Hu ZX et al (2023) Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem Soc Rev 52(1):8–29

    Article  CAS  PubMed  Google Scholar 

  63. Du MM, Zhang Y, Kang SL et al (2022) Trash to treasure: photoreforming of plastic waste into commodity chemicals and hydrogen over MoS2-tipped CdS nanorods. ACS Catal 12(20):12823–12832

    Article  CAS  Google Scholar 

  64. Chen LN, Song ZG, Zhang SC et al (2023) Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis. Science 381(6660):857–861

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Jiao XC, Hu ZX, Zheng K et al (2022) Direct polyethylene photoreforming into exclusive liquid fuel over charge-asymmetrical dual sites under mild conditions. Nano Lett 22(24):10066–10072

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Tavasoli AV, Preston M, Ozin G (2021) Photocatalytic dry reforming: what is it good for? Energy Environ Sci 14(5):3098–3109

    Article  CAS  Google Scholar 

  67. Uekert T, Kuehnel MF, Wakerley DW et al (2018) Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ Sci 11(10):2853–2857

    Article  CAS  Google Scholar 

  68. Uekert T, Kasap H, Reisner E (2019) Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J Am Chem Soc 141(38):15201–15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ren PN, Gao ZY, Montini T et al (2023) Stepwise photoassisted decomposition of carbohydrates to H2. Joule 7(2):333–349

    Article  CAS  Google Scholar 

  70. Gao RT, Nguyen NT, Nakajima T et al (2023) Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Sci Adv 9(1):eade4589

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gao ZW, Ma B, Chen S et al (2022) Converting waste PET plastics into automobile fuels and antifreeze components. Nat Commun 13(1):3343

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Zhou W, Wang BH, Tang L et al (2023) Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv Funct Mater 33(27):2214068

    Article  CAS  Google Scholar 

  73. Zhang XS, Jiang Y, Kong G et al (2023) CO2-mediated catalytic upcycling of plastic waste for H2-rich syngas and carbon nanomaterials. J Hazard Mater 460:132500

    Article  CAS  PubMed  Google Scholar 

  74. Jiang D, Yuan HF, Liu Z et al (2023) Defect-anchored single-atom-layer Pt clusters on TiO2-x/Ti for efficient hydrogen evolution via photothermal reforming plastics. Appl Catal B 339:123081

    Article  CAS  Google Scholar 

  75. Zhang SA, Li HB, Wang L et al (2023) Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. J Am Chem Soc 145(11):6410–6419

    Article  CAS  PubMed  Google Scholar 

  76. Liu CX, Shi R, Ma WJ et al (2023) Photoreforming of polyester plastics into added-value chemicals coupled with H2 evolution over a Ni2P/ZnIn2S4 catalyst. Inorg Chem Front 10(15):4562–4568

    Article  CAS  Google Scholar 

  77. Lee WH, Lee CW, Cha GD et al (2023) Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat Nanotechnol 18(7):754–762

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Shang WK, Li YG, Huang HW et al (2021) Synergistic redox reaction for value-added organic transformation via dual-functional photocatalytic systems. ACS Catal 11(8):4613–4632

    Article  CAS  Google Scholar 

  79. Ye J, Chen YP, Gao C et al (2022) Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic-abiotic hybrid photocatalytic system. Angew Chem Int Ed Engl 61(52):e202213244

    Article  CAS  PubMed  Google Scholar 

  80. Tian XZ, Guo YG, An WK et al (2022) Coupling photocatalytic water oxidation with reductive transformations of organic molecules. Nat Commun 13:6186–6186

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Qin JB, Dou YB, Zhou JC et al (2023) Photocatalytic valorization of plastic waste over zinc oxide encapsulated in a metal–organic framework (adv. funct. mater. 28/2023). Adv Funct Mater 33(28):2214839

    Article  CAS  Google Scholar 

  82. Li XY, Wang C, Yang JL et al (2023) PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors. Nat Commun 14(1):6343

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Wang JY, Li X, Wang ML et al (2022) Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal 12(11):6722–6728

    Article  CAS  Google Scholar 

  84. Pan YY, Zhang HY, Zhang BW et al (2023) Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat Commun 14(1):1–10

    Article  CAS  ADS  Google Scholar 

  85. Xing CW, Yu GY, Zhou J et al (2022) Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets. Appl Catal B 315:121496

    Article  CAS  Google Scholar 

  86. Wang C, Qiu TY, Zhao YN et al (2023) Phosphorus-alkynyl functionalized covalent triazine/heptazine-based frameworks for high-performance photocatalytic hydrogen peroxide production. Adv Energy Mater 13(43):2301634

    Article  CAS  Google Scholar 

  87. Li Z, Zhou YY, Zhou YT et al (2023) Dipole field in nitrogen-enriched carbon nitride with external forces to boost the artificial photosynthesis of hydrogen peroxide. Nat Commun 14(1):1–10

    ADS  Google Scholar 

  88. Luo J, Liu YN, Fan CZ et al (2021) Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal 11(18):11440–11450

    Article  CAS  Google Scholar 

  89. Luo Y, Zhang BP, Liu CC et al (2023) Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction. Angew Chem Int Ed 62(26):e202305355

    Article  CAS  Google Scholar 

  90. Gong XQ, Ma FH, Zhang YJ et al (2023) in situ construction of an intramolecular donor–acceptor conjugated copolymer via terephthalic acid derived from plastic waste for photocatalysis of plastic to hydrogen peroxide. ACS Catal 13(18):12338–12349

    Article  CAS  Google Scholar 

  91. Luo XX, Wu BJ, Li JR et al (2023) Benzoic acid: electrode-regenerated molecular catalyst to boost cycloolefin epoxidation. J Am Chem Soc 145(37):20665–20671

    Article  CAS  PubMed  Google Scholar 

  92. Huang HL, Yu C, Han XT et al (2020) Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA/cm2. Energy Environ Sci 13(12):4990–4999

    Article  CAS  Google Scholar 

  93. Zhai WH, Zhang YK, Liu M et al (2019) Universal scaffold for an activatable photosensitizer with completely inhibited photosensitivity. Angew Chem Int Ed 58(46):16601–16609

    Article  CAS  Google Scholar 

  94. Amthor S, Knoll S, Heiland M et al (2022) A photosensitizer–polyoxometalate dyad that enables the decoupling of light and dark reactions for delayed on-demand solar hydrogen production. Nat Chem 14(3):321–327

    Article  CAS  PubMed  Google Scholar 

  95. Huang ZL, Shanmugam M, Liu Z et al (2022) Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J Am Chem Soc 144(14):6532–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang F, Zeng MH, Yappert RD et al (2020) Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370(6515):437–441

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Li CF, Kong XY, Lyu MP et al (2023) Upcycling of non-biodegradable plastics by base metal photocatalysis. Chem 9(9):2683–2700

    Article  CAS  Google Scholar 

  98. Bhattacharjee S, Guo CZ, Lam E et al (2023) Chemoenzymatic photoreforming: a sustainable approach for solar fuel generation from plastic feedstocks. J Am Chem Soc 145(37):20355–20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ren SY, Xu X, Zhu ZS et al (2024) Catalytic transformation of microplastics to functional carbon for catalytic peroxymonosulfate activation: conversion mechanism and defect of scavenging. Appl Catal B 342:123410

    Article  CAS  Google Scholar 

  100. Lewis SE, Wilhelmy BE, Leibfarth FA (2020) Organocatalytic C–H fluoroalkylation of commodity polymers. Polym Chem 11(30):4914–4919

    Article  CAS  Google Scholar 

  101. Lewis SE, Wilhelmy BE, Leibfarth FA (2019) Upcycling aromatic polymers through C–H fluoroalkylation. Chem Sci 10(25):6270–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cao RC, Zhang MQ, Jiao YC et al (2023) Co-upcycling of polyvinyl chloride and polyesters. Nat Sustain 6:1–8

    Article  Google Scholar 

  103. Domínguez-Jaimes LP, Cedillo-González EI, Luévano-Hipólito E et al (2021) Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J Hazard Mater 413:125452

    Article  PubMed  Google Scholar 

  104. Tofa TS, Kunjali KL, Paul S et al (2019) Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ Chem Lett 17(3):1341–1346

    Article  CAS  Google Scholar 

  105. Amato P, Muscetta M, Venezia V et al (2023) Eco-sustainable design of humic acids-doped ZnO nanoparticles for UVA/light photocatalytic degradation of LLDPE and PLA plastics. J Environ Chem Eng 11(1):109003

    Article  CAS  Google Scholar 

  106. Li YQ, Wan SP, Lin C et al (2020) Engineering of 2D/2D MoS2/CdxZn1–xS photocatalyst for solar H2 evolution coupled with degradation of plastic in alkaline solution. Sol RRL 5(6):2000427

    Article  Google Scholar 

  107. Han M, Zhu SJ, Xia CL et al (2022) Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Appl Catal B 316:121662

    Article  CAS  Google Scholar 

  108. Pichler CM, Bhattacharjee S, Rahaman M et al (2021) Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical-photo/electrocatalytic processes. ACS Catal 11(15):9159–9167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao LL, Dong TJ, Du JL et al (2020) Synthesis of CdS/MoS2 nanooctahedrons heterostructure with a tight interface for enhanced photocatalytic H2 evolution and biomass upgrading. Sol RRL 5(2):200041

    Google Scholar 

Download references

Acknowledgements

This work was supported by the support by the Natural Science Foundation of China projects (Nos. 22225604 and 22076082), the Frontiers Science Center for New Organic Matter (No. 63181206), and Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihui Zhan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Yue, S., Yang, G. et al. A Unified View of Carbon Neutrality: Solar-Driven Selective Upcycling of Waste Plastics. Trans. Tianjin Univ. 30, 1–26 (2024). https://doi.org/10.1007/s12209-024-00383-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-024-00383-4

Keywords

Navigation