Skip to main content

Advertisement

Log in

Progress of Proximity Sensors for Potential Applications in Electronic Skins

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Recently, electronic skins and flexible wearable devices have been developed for widespread applications in medical monitoring, artificial intelligence, human–machine interaction, and artificial prosthetics. Flexible proximity sensors can accurately perceive external objects without contact, introducing a new way to achieve an ultrasensitive perception of objects. This article reviews the progress of flexible capacitive proximity sensors, flexible triboelectric proximity sensors, and flexible gate-enhanced proximity sensors, focusing on their applications in the electronic skin field. Herein, their working mechanism, materials, preparation methods, and research progress are discussed in detail. Finally, we summarize the future challenges in developing flexible proximity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li S, Zhang Y, Wang Y et al (2020) Physical sensors for skin-inspired electronics. InfoMat 2(1):184–211

    Article  CAS  Google Scholar 

  2. Lee Y, Park J, Choe A et al (2020) Mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 30(20):1904523

    Article  CAS  Google Scholar 

  3. Yang JC, Mun J, Kwon SY et al (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):e1904765

    Article  PubMed  Google Scholar 

  4. Xu L, Gutbrod SR, Bonifas AP et al (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5:3329

    Article  ADS  PubMed  Google Scholar 

  5. Wu H, Gao W, Yin Z (2017) Materials, devices and systems of soft bioelectronics for precision therapy. Adv Healthc Mater 6(10):1700017

    Article  Google Scholar 

  6. Zhang S, Li S, Xia Z et al (2020) A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 8(5):852–862

    Article  CAS  PubMed  Google Scholar 

  7. Guo W, Zheng P, Huang X et al (2019) Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl Mater Interfaces 11(8):8567–8575

    Article  CAS  PubMed  Google Scholar 

  8. Guo Y, Guo Z, Zhong M et al (2018) A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 14(44):e1803018

    Article  PubMed  Google Scholar 

  9. Kim J, Lee M, Shim HJ et al (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5:5747

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hammock ML, Chortos A, Tee BCK et al (2013) 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Xiang Z, Zhu S et al (2014) Dual functional transparent film for proximity and pressure sensing. Nano Res 7(10):1488–1496

    Article  Google Scholar 

  12. Choi TY, Hwang BU, Kim BY et al (2017) Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl Mater Interfaces 9(21):18022–18030

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Zhou X, Chen J et al (2020) Laser-patterned copper electrodes for proximity and tactile sensors. Adv Materials Inter 7(4):1901845

    Article  CAS  Google Scholar 

  14. Moheimani R, Aliahmad N, Aliheidari N et al (2021) Thermoplastic polyurethane flexible capacitive proximity sensor reinforced by CNTs for applications in the creative industries. Sci Rep 11(1):1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu X, Yang W (2010) Planar capacitive sensors–designs and applications. Sens Rev 30(1):24–39

    Article  CAS  Google Scholar 

  16. Kulkarni MR, John RA, Rajput M et al (2017) Transparent flexible multifunctional nanostructured architectures for non-optical readout, proximity, and pressure sensing. ACS Appl Mater Interfaces 9(17):15015–15021

    Article  CAS  PubMed  Google Scholar 

  17. Rim YS, Bae SH, Chen H et al (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28(22):4415–4440

    Article  CAS  PubMed  Google Scholar 

  18. Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nyein HYY, Gao W, Shahpar Z et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10(7):7216–7224

    Article  CAS  PubMed  Google Scholar 

  20. Gao W, Nyein HYY, Shahpar Z et al (2016) Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens 1(7):866–874

    Article  CAS  Google Scholar 

  21. Glennon T, O’Quigley C, McCaul M et al (2016) ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis 28(6):1283–1289

    Article  CAS  Google Scholar 

  22. Zhu S, Gao Y, Hu B et al (2013) Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24(33):335202

    Article  ADS  PubMed  Google Scholar 

  23. Lee J, Lee P, Lee H et al (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414

    Article  ADS  CAS  PubMed  Google Scholar 

  24. De S, Higgins TM, Lyons PE et al (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774

    Article  CAS  PubMed  Google Scholar 

  25. Kang M, Kim J, Jang B et al (2017) Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8):7950–7957

    Article  CAS  PubMed  Google Scholar 

  26. Pang L, Zhao QL, Sheng TY et al (2019) Enhanced pressure & proximity sensitivities of a flexible transparent capacitive sensor with PZT nanowires. IOP Conf Ser: Mater Sci Eng 479:012035

    Article  CAS  Google Scholar 

  27. Qin Y, Xu H, Li S et al (2022) Dual-mode flexible capacitive sensor for proximity-tactile interface and wireless perception. IEEE Sens J 22(11):10446–10453

    Article  ADS  CAS  Google Scholar 

  28. Xu H, Gao L, Wang Y et al (2020) Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics. Nanomicro Lett 12(1):159

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Liu X, Miao J, Fan Q et al (2022) Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater 4(3):361–389

    Article  CAS  Google Scholar 

  30. Ye X, Shi B, Li M et al (2022) All-textile sensors for Boxing punch force and velocity detection. Nano Energy 97:107114

    Article  CAS  Google Scholar 

  31. Jin J, Lee D, Im HG et al (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28(26):5169–5175

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Liu Y, Liu X et al (2021) Degradable gelatin-based supramolecular coating for green paper sizing. ACS Appl Mater Interfaces 13(1):1367–1376

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Zhao X, Chen Y et al (2021) Reversible writing/re-writing polymeric paper in multiple environments. Adv Funct Materials 31(37):2104784

    Article  CAS  Google Scholar 

  34. Sadri B, Goswami D, Sala de Medeiros M et al (2018) Wearable and implantable epidermal paper-based electronics. ACS Appl Mater Interfaces 10(37):31061–31068

    Article  CAS  PubMed  Google Scholar 

  35. Aeby X, Poulin A, Siqueira G et al (2021) Fully 3D printed and disposable paper supercapacitors. Adv Mater 33(26):e2101328

    Article  PubMed  Google Scholar 

  36. Gong S, Schwalb W, Wang Y et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

    Article  ADS  PubMed  Google Scholar 

  37. Zhan Z, Lin R, Tran VT et al (2017) Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl Mater Interfaces 9(43):37921–37928

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Song Y, Xu F (2018) Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl Mater Interfaces 10(40):34646–34654

    Article  CAS  PubMed  Google Scholar 

  39. Zhao P, Zhang R, Tong Y et al (2021) Shape-designable and reconfigurable all-paper sensor through the sandwich architecture for pressure/proximity detection. ACS Appl Mater Interfaces 13(41):49085–49095

    Article  CAS  PubMed  Google Scholar 

  40. Yuan L, Yao B, Hu B et al (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476

    Article  CAS  Google Scholar 

  41. Liu YQ, Zhang YL, Jiao ZZ et al (2018) Directly drawing high-performance capacitive sensors on copying tissues. Nanoscale 10(36):17002–17006

    Article  CAS  PubMed  Google Scholar 

  42. Lee C, Jug L, Meng E (2013) High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl Phys Lett 102(18):183511

    Article  ADS  Google Scholar 

  43. Zhao X, Tong Y, Tang Q et al (2015) Wafer-scale coplanar electrodes for 3D conformal organic single-crystal circuits. Adv Elect Materials 1(12):1500239

    Article  Google Scholar 

  44. Shi H, Al-Rubaiai M, Holbrook CM et al (2019) Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv Funct Mater 29(23):1809116

    Article  Google Scholar 

  45. Park H, Kim JW, Hong SY et al (2018) Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv Funct Materials 28(33):1707013

    Article  Google Scholar 

  46. Khan S, Dang W, Lorenzelli L et al (2015) Flexible pressure sensors based on screen-printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans Semicond Manuf 28(4):486–493

    Article  Google Scholar 

  47. Zhao P, Zhang R, Tong Y et al (2020) Strain-discriminable pressure/proximity sensing of transparent stretchable electronic skin based on PEDOT: PSS/SWCNT electrodes. ACS Appl Mater Interfaces 12(49):55083–55093

    Article  CAS  PubMed  Google Scholar 

  48. Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4):2345–2352

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Hua Q, Sun J, Liu H et al (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9(1):244

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Sarwar MS, Dobashi Y, Preston C et al (2017) Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci Adv 3(3):e1602200

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Bu D, Li SQ, Sang YM et al (2018) High transparency flexible sensor for pressure and proximity sensing. Mod Phys Lett B 32(32):1850394

    Article  ADS  CAS  Google Scholar 

  52. Gao D, Wang J, Ai K et al (2020) Inkjet-printed iontronics for transparent, elastic, and strain-insensitive touch sensing matrix. Adv Intell Syst 2(7):2000088

    Article  Google Scholar 

  53. Dai Y, Chen J, Tian W et al (2020) A PVDF/Au/PEN multifunctional flexible human-machine interface for multidimensional sensing and energy harvesting for the Internet of Things. IEEE Sens J 20(14):7556–7568

    Article  ADS  CAS  Google Scholar 

  54. Dai Y, Gao S (2021) A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots. IEEE Sens J 21(23):26355–26363

    Article  ADS  CAS  Google Scholar 

  55. Melcher J, Yang D, Arlt G (1989) Dielectric effects of moisture in polyimide. IEEE Trans Electr Insul 24(1):31–38

    Article  CAS  Google Scholar 

  56. Ben-Yasharand G, Ya’akobovitz A (2021) Electronic skin with embedded carbon nanotubes proximity sensors. IEEE Trans Electron Devices 68(8):4098–4103

    Article  ADS  CAS  Google Scholar 

  57. Zheng K, Gu F, Wei H et al (2023) Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction. Small Methods 7(4):e2201534

    Article  PubMed  Google Scholar 

  58. Zhang R, Hummelgård M, Örtegren J et al (2021) The triboelectricity of the human body. Nano Energy 86:106041

    Article  CAS  Google Scholar 

  59. Dong K, Peng X, Wang ZL (2020) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32(5):e1902549

    Article  PubMed  Google Scholar 

  60. Chalmers GK (1937) The lodestone and the understanding of matter in seventeenth century England. Philos Sci 4(1):75–95

    Article  Google Scholar 

  61. Henniker J (1962) Triboelectricity in polymers. Nature 196(4853):474

    Article  ADS  CAS  Google Scholar 

  62. Davies DK (1969) Charge generation on dielectric surfaces. J Phys D: Appl Phys 2(11):1533–1537

    Article  ADS  Google Scholar 

  63. Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24(2):280–285

    Article  CAS  PubMed  Google Scholar 

  64. Wang S, Lin L, Xie Y et al (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13(5):2226–2233

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Wang S, Xie Y, Niu S et al (2014) Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 26(18):2818–2824

    Article  CAS  PubMed  Google Scholar 

  66. Yang Y, Zhang H, Chen J et al (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8):7342–7351

    Article  CAS  PubMed  Google Scholar 

  67. Ren Z, Nie J, Shao J et al (2018) Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Adv Funct Materials 28(31):1802989

    Article  Google Scholar 

  68. Wang F, Ren Z, Nie J et al (2020) Self-powered sensor based on bionic antennae arrays and triboelectric nanogenerator for identifying noncontact motions. Adv Mater Technol 5(1):1900789

    Article  Google Scholar 

  69. Anaya DV, Zhan K, Tao L et al (2021) Contactless tracking of humans using non-contact triboelectric sensing technology: enabling new assistive applications for the elderly and the visually impaired. Nano Energy 90:106486

    Article  CAS  Google Scholar 

  70. Shrestha K, Sharma S, Pradhan GB et al (2022) A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Adv Funct Mater 32(27):2113005

    Article  CAS  Google Scholar 

  71. Tu S, Jiang Q, Zhang X et al (2018) Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12(4):3369–3377

    Article  CAS  PubMed  Google Scholar 

  72. Guo ZH, Wang HL, Shao J et al (2022) Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci Adv 8(21):eabo5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang S, Wang Y, Yao X et al (2020) Stretchable electrets: nanoparticle-elastomer composites. Nano Lett 20(6):4580–4587

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Lai YC, Deng J, Liu R et al (2018) Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Adv Mater 30(28):e1801114

    Article  PubMed  Google Scholar 

  75. Helseth LE (2019) Triboelectric proximity and contact detection using soft planar spiral electrodes. Smart Mater Struct 28(9):095009

    Article  ADS  CAS  Google Scholar 

  76. Wang H, Tang Q, Zhao X et al (2018) Ultrasensitive flexible proximity sensor based on organic crystal for location detection. ACS Appl Mater Interfaces 10(3):2785–2792

    Article  CAS  PubMed  Google Scholar 

  77. Reyes-Martinez MA, Crosby AJ, Briseno AL (2015) Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat Commun 6:6948

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Wu Y, Chew AR, Rojas GA et al (2016) Strain effects on the work function of an organic semiconductor. Nat Commun 7:10270

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yao Y, Dong H, Hu W (2016) Charge transport in organic and polymeric semiconductors for flexible and stretchable devices. Adv Mater 28(22):4513–4523

    Article  CAS  PubMed  Google Scholar 

  80. Reyes-Martinez MA, Ramasubramaniam A, Briseno AL et al (2012) The intrinsic mechanical properties of rubrene single crystals. Adv Mater 24(41):5548–5552

    Article  CAS  PubMed  Google Scholar 

  81. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557

    Article  CAS  PubMed  Google Scholar 

  82. Meng B, Tang W, Too ZH et al (2013) A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci 6(11):3235–3240

    Article  Google Scholar 

  83. Chen X, Song Y, Su Z et al (2017) Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 38:43–50

    Article  CAS  Google Scholar 

  84. Ma M, Zhang Z, Liao Q et al (2017) Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32:389–396

    Article  CAS  Google Scholar 

  85. Wang H, Tong Y, Zhao X et al (2019) Ultrasensitive charged object detection based on rubrene crystal sensor. IEEE Trans Electron Devices 66(7):3139–3143

    Article  ADS  CAS  Google Scholar 

  86. Lv G, Wang H, Tong Y et al (2020) Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv Mater Interfaces 7(16):2000306

    Article  CAS  Google Scholar 

  87. Za’aba NK, Morrison JJ, Taylor DM (2017) Effect of relative humidity and temperature on the stability of DNTT transistors: a density of states investigation. Org Electron 45:174–181

    Article  CAS  Google Scholar 

  88. Liu W, Niu Y, Chen Q et al (2019) High-performance proximity sensors with nanogroove-template-enhanced extended-gate field-effect transistor configuration. Adv Electr Mater 5(12):1900586

    Article  CAS  Google Scholar 

  89. Shoji I, Wada H, Uto K et al (2021) Visualizing quasi-static electric fields with flexible and printed organic transistors. Adv Mater Technol 6(12):2100723

    Article  CAS  Google Scholar 

  90. Matsui H, Takeda Y, Tokito S (2019) Flexible and printed organic transistors: from materials to integrated circuits. Org Electron 75:105432

    Article  CAS  Google Scholar 

  91. Shiwaku R, Matsui H, Hayasaka K et al (2017) Printed organic inverter circuits with ultralow operating voltages. Adv Elect Materials 3(5):1600557

    Article  Google Scholar 

  92. Kedambaimoole V, Kumar N, Shirhatti V et al (2021) Reduced graphene oxide tattoo as wearable proximity sensor. Adv Elect Materials 7(4):2001214

    Article  CAS  Google Scholar 

  93. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    Article  CAS  PubMed  Google Scholar 

  94. Zhao GD, Zhao L, Wang HT et al (2022) Flexible, conformal composite proximity sensor for detection of conductor and insulator. Chin J Anal Chem 50(1):20–23

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2022YFF1202700 and 2022YFB3203500), National Natural Science Foundation of China (Nos. 62225403, 62375046, 51973024, and U19A2091), “111” Project (No. B13013), Natural Science Foundation of Jilin Province (No. 20230101113JC), and the Funding from Jilin Province (No. 20220502002GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Tong or Qingxin Tang.

Ethics declarations

Conflict of interest

All authors declare that there is no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, R., Tong, Y., Liu, J. et al. Progress of Proximity Sensors for Potential Applications in Electronic Skins. Trans. Tianjin Univ. 30, 40–62 (2024). https://doi.org/10.1007/s12209-023-00379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00379-6

Keywords

Navigation