Skip to main content

Advertisement

Log in

Recent Progress of Conductive Metal–Organic Frameworks for Electrochemical Energy Storage

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources, and exploring advanced electrodes with high reversible capacity, excellent rate performance, and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem. Particularly because of their diverse structure, high specific surface area, and adjustable redox activity, electrically conductive metal–organic frameworks (c-MOFs) are considered promising candidates for these electrochemical applications, and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion. Herein, the chemical structure of c-MOFs and their conductive mechanism are first introduced. Subsequently, a comprehensive summarization of the current applications of c-MOFs in energy storage systems, namely supercapacitors, LIBs, SIBs, and ZIBs, is presented. Finally, the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented, which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [30]. Copyright © 2021 American Chemical Society

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li HF, Ma LT, Han CP et al (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587

    Article  Google Scholar 

  2. Jia H, Wang ZQ, Tawiah B et al (2020) Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70:104523

    Article  Google Scholar 

  3. Tian Y, An YL, Wei CL et al (2021) Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv Energy Mater 11(5):2002529

    Article  Google Scholar 

  4. Wang MM, Zheng XH, Zhang X et al (2021) Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv Energy Mater 11(5):2002904

    Article  Google Scholar 

  5. Liu SD, Kang L, Kim JM et al (2020) Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater 10(25):2000477

    Article  Google Scholar 

  6. Yong B, Ma DT, Wang YY et al (2020) Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv Energy Mater 10(45):2002354

    Article  Google Scholar 

  7. Wang N, Dong XL, Wang BL et al (2020) Zinc-organic battery with a wide operation-temperature window from –70 to 150 ℃. Angew Chem Int Ed Engl 59(34):14577–14583

    Article  Google Scholar 

  8. Tie ZW, Niu ZQ (2020) Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed Engl 59(48):21293–21303

    Article  Google Scholar 

  9. Lu Y, Zhang Q, Li L et al (2018) Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4(12):2786–2813

    Article  Google Scholar 

  10. Tie ZW, Liu LJ, Deng SZ et al (2020) Proton insertion chemistry of a zinc-organic battery. Angew Chem Int Ed Engl 59(12):4920–4924

    Article  Google Scholar 

  11. Zhao Q, Huang WW, Luo ZQ et al (2018) High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv 4(3):eaao1761

    Article  Google Scholar 

  12. Nam KW, Kim H, Beldjoudi Y et al (2020) Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J Am Chem Soc 142(5):2541–2548

    Article  Google Scholar 

  13. Feng DW, Lei T, Lukatskaya MR et al (2018) Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy 3(1):30–36

    Article  Google Scholar 

  14. Jiang Q, Xiong PX, Liu JJ et al (2020) A redox-active 2D metal–organic framework for efficient lithium storage with extraordinary high capacity. Angew Chem Int Ed Engl 59(13):5273–5277

    Article  Google Scholar 

  15. Wu XY, Qiu Y, Chen ZJ et al (2020) Paramagnetic conducting metal–organic frameworks with three-dimensional structure. Angew Chem Int Ed Engl 59(47):20873–20878

    Article  Google Scholar 

  16. Xie LS, Skorupskii G, Dincă M (2020) Electrically conductive metal–organic frameworks. Chem Rev 120(16):8536–8580

    Article  Google Scholar 

  17. Cai GF, Cui P, Shi WX et al (2020) One-dimensional π-d conjugated coordination polymer for electrochromic energy storage device with exceptionally high performance. Adv Sci (Weinh) 7(20):1903109

    Article  Google Scholar 

  18. Nam KW, Park SS, dos Reis R et al (2019) Conductive 2D metal–organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun 10(1):4948

    Article  Google Scholar 

  19. Mao PC, Lan GX, Liu C et al (2021) Recent advances in synthesis of two-dimensional conductive metal–organic frameworks and their electrochemical energy storage application. Sustain Mater Technol 30:e00354

    Google Scholar 

  20. Liu JJ, Song XY, Zhang T et al (2021) 2D conductive metal–organic frameworks: an emerging platform for electrochemical energy storage. Angew Chem Int Ed Engl 60(11):5612–5624

    Article  Google Scholar 

  21. Zhu BJ, Wen DS, Liang ZB et al (2021) Conductive metal–organic frameworks for electrochemical energy conversion and storage. Coord Chem Rev 446:214119

    Article  Google Scholar 

  22. Cheng XF, Li J, Hou X et al (2019) One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Sci China Chem 62(6):753–760

    Article  Google Scholar 

  23. Xie J, Cheng XF, Cao X et al (2019) Nanostructured metal–organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small 15(49):e1903188

    Article  Google Scholar 

  24. Park J, Hinckley AC, Huang ZH et al (2020) High thermopower in a Zn-based 3D semiconductive metal-organic framework. J Am Chem Soc 142(49):20531–20535

    Article  Google Scholar 

  25. Wang X, Bahri M, Fu ZW et al (2021) A cubic 3D covalent organic framework with NbO topology. J Am Chem Soc 143(37):15011–15016

    Article  Google Scholar 

  26. Chen G, Gee LB, Xu WQ et al (2020) Valence-dependent electrical conductivity in a 3D tetrahydroxyquinone-based metal–organic framework. J Am Chem Soc 142(51):21243–21248

    Article  Google Scholar 

  27. Sun L, Hendon CH, Park SS et al (2017) Is iron unique in promoting electrical conductivity in MOFs? Chem Sci 8(6):4450–4457

    Article  Google Scholar 

  28. Sun L, Miyakai T, Seki S et al (2013) Mn2(2, 5-disulfhydrylbenzene-1, 4-dicarboxylate): a microporous metal-organic framework with infinite (−Mn−S−) ∞ chains and high intrinsic charge mobility. J Am Chem Soc 135(22):8185–8188

    Article  Google Scholar 

  29. Skorupskii G, Trump BA, Kasel TW et al (2020) Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Nat Chem 12(2):131–136

    Article  Google Scholar 

  30. Li CW, Sun XJ, Yao YG et al (2021) Recent advances of electrically conductive metal–organic frameworks in electrochemical applications. Mater Today Nano 13:100105

    Article  Google Scholar 

  31. Sheberla D, Bachman JC, Elias JS et al (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  Google Scholar 

  32. Park J, Lee M, Feng DW et al (2018) Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage. J Am Chem Soc 140(32):10315–10323

    Article  Google Scholar 

  33. Zhai ZZ, Zhang LH, Du TM et al (2022) A review of carbon materials for supercapacitors. Mater Des 221:111017

    Article  Google Scholar 

  34. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  Google Scholar 

  35. Zhou SY, Kong XY, Zheng B et al (2019) Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13(8):9578–9586

    Article  Google Scholar 

  36. Hou RZ, Miao M, Wang QY et al (2020) Integrated conductive hybrid architecture of metal–organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater 10(1):1901892

    Article  Google Scholar 

  37. Li WH, Ding K, Tian HR et al (2017) Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27(27):1702067

    Article  Google Scholar 

  38. Lukatskaya MR, Feng DW, Bak SM et al (2020) Understanding the mechanism of high capacitance in nickel hexaaminobenzene-based conductive metal–organic frameworks in aqueous electrolytes. ACS Nano 14(11):15919–15925

    Article  Google Scholar 

  39. Liu JJ, Zhou Y, Xie Z et al (2020) Conjugated copper-catecholate framework electrodes for efficient energy storage. Angew Chem Int Ed Engl 59(3):1081–1086

    Article  Google Scholar 

  40. Zhang QQ, Liu K, Li C et al (2021) The surface triple-coupling on single crystalline cathode for lithium ion batteries. Nano Energy 86:106096

    Article  Google Scholar 

  41. Wang J, Gao CH, Yang Z et al (2022) Carbon-coated mesoporous silicon shell-encapsulated silicon nano-grains for high performance lithium-ion batteries anode. Carbon 192:277–284

    Article  Google Scholar 

  42. Wada K, Sakaushi K, Sasaki S et al (2018) Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands. Angew Chem Int Ed Engl 57(29):8886–8890

    Article  Google Scholar 

  43. Wu ZZ, Adekoya D, Huang X et al (2020) Highly conductive two-dimensional metal–organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 14(9):12016–12026

    Article  Google Scholar 

  44. Wang ZY, Wang G, Qi HY et al (2020) Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem Sci 11(29):7665–7671

    Article  Google Scholar 

  45. Guo LZ, Sun JF, Zhang WH et al (2019) Bottom-up fabrication of 1D Cu-based conductive metal–organic framework nanowires as a high-rate anode towards efficient lithium storage. Chemsuschem 12(22):5051–5058

    Article  Google Scholar 

  46. Chen Y, Tang M, Wu YC et al (2019) A one-dimensional π-d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling. Angew Chem Int Ed Engl 58(41):14731–14739

    Article  Google Scholar 

  47. Wang LB, Ni YX, Hou XS et al (2020) A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage. Angew Chem Int Ed Engl 59(49):22126–22131

    Article  Google Scholar 

  48. Chen Y, Zhu Q, Fan K et al (2021) Successive storage of cations and anions by ligands of π-d-conjugated coordination polymers enabling robust sodium-ion batteries. Angew Chem Int Ed Engl 60(34):18769–18776

    Article  Google Scholar 

  49. Zhao Y, Huang YX, Wu F et al (2021) High-performance aqueous zinc batteries based on organic/organic cathodes integrating multi-redox centers. Adv Mater 33(52):e2106469

    Article  Google Scholar 

  50. Zhang Y, Wan F, Huang S et al (2020) A chemically self-charging aqueous zinc-ion battery. Nat Commun 11(1):2199

    Article  Google Scholar 

  51. Wang XL, Xiao JJ, Tang WH (2022) Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv Funct Mater 32(4):2108225

    Article  Google Scholar 

  52. Ye ZL, Xie SJ, Cao ZY et al (2021) High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater 37:378–386

    Article  Google Scholar 

  53. Zhang LL, Chen YN, Jiang ZY et al (2022) Cation-anion redox active organic complex for high performance aqueous zinc ion battery. Energy Environ Mater: e12507

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22002107 and 21905202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Z., Tong, Y., Hou, F. et al. Recent Progress of Conductive Metal–Organic Frameworks for Electrochemical Energy Storage. Trans. Tianjin Univ. 29, 136–150 (2023). https://doi.org/10.1007/s12209-022-00352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00352-9

Keywords

Navigation