Skip to main content
Log in

Gold Nanoparticles of Multiple Shapes Synthesized in l-Tryptophan Aqueous Solution

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In this paper, we describe a simple and efficient synthesis of gold nanoparticles (GNPs) of various shapes (spherical, rod-like, hexagonal, truncated triangular, and triangular) using Au(III) reduction in aqueous solutions by l-tryptophan. We evaluated the influences of reaction temperature, foreign metal ions Ag (I), and surfactants of nonionic (polyethylene glycol, PEG), anionic (sodium dodecyl sulfate, SDS), and cationic (cetyltrimethyl ammonium bromide, CTAB) on GNPs synthesis. We characterized the resultant GNPs using UV–visible adsorption spectroscopy, transmission electron microscopy/high-resolution transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, selected-area electron diffraction, and Fourier-transform infrared spectroscopy. We fabricated the variously sized GNPs by controlling the rate of the reduction of gold ions in aqueous solution by varying the reaction temperature: the higher the temperature, the smaller the gold nanospheres. We found the existence of Ag(I) to reinforce the reduction of Au(III) and to correspond with the appearance of some amorphous bimetallic Au/Ag nanoparticles. Additionally, we found the presence of surfactants to greatly influence the shape of the formed GNPs, especially the presence of CTAB, which results in the anisotropic growth of gold nanocrystals into hexagonal, truncated triangular, and triangular nanoplates. In addition, with the increase in CTAB concentration, we found the amount of gold nanoplates to first increase and then decrease. Finally, we performed preliminary explorations of the reduction process and morphological evolution to propose possible corresponding reduction and morphological evolution pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  Google Scholar 

  2. Narayanan R, EI-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4(7):1343–1348

    Article  Google Scholar 

  3. Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963):319–322

    Article  Google Scholar 

  4. Félidj N, Aubard J, Lévi G (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65(7):1–9

    Article  Google Scholar 

  5. Jena BK, Raj CR (2007) Amperometric L-lactate biosensor based on gold nanoparticles. Electroanalysis 19(7–8):816–822

    Article  Google Scholar 

  6. Zheng B, Qian L, Yuan H et al (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1):177–183

    Article  Google Scholar 

  7. Loo C, Lowery A, Halas N et al (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  Google Scholar 

  8. Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery 11(3):169–183

    Article  Google Scholar 

  9. Ravenendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  Google Scholar 

  10. He SY, Guo ZR, Zhang Y et al (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61(18):3984–3987

    Article  Google Scholar 

  11. Cai F, Li J, Sun JS et al (2011) Biosynthesis of gold nanoparticles by biosorption using magnetospirillum gryphiswaldense MSR-1. Chem Eng J 175:70–75

    Article  Google Scholar 

  12. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  Google Scholar 

  13. Binupriya AR, Sathishkumar M, Vijayaraghavan K et al (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177(1–3):539–545

    Article  Google Scholar 

  14. Kowshik M, Ashtaputre S, Kharrazi S et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  15. Liu B, Xie J, Lee JY et al (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109(32):15256–15263

    Article  Google Scholar 

  16. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from silver(I) nitrate complex. Langmuir 23(5):2694–2699

    Article  Google Scholar 

  17. Shankar SS, Rai A, Ankamwar B et al (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    Article  Google Scholar 

  18. Xie JP, Lee JY, Wang DIC et al (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865

    Article  Google Scholar 

  19. Xie JP, Lee JY, Wang DIC et al (2007) Silver nanoplates: from biological to biomimetic synthesis. Am Chem Soc 1(5):429–439

    Google Scholar 

  20. Kalimuthu K, Babu RS, Venkataraman D et al (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65(1):150–153

    Article  Google Scholar 

  21. Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826

    Article  Google Scholar 

  22. Vijayaraghavan K, Mahadevan A, Sathishkumar M et al (2011) Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem Eng J 167(1):223–227

    Article  Google Scholar 

  23. Lee J, Kim HY, Zhou HJ et al (2011) Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem 21(35):13316–13326

    Article  Google Scholar 

  24. Xie JP, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111(28):10226–10232

    Article  Google Scholar 

  25. Sanpui P, Pandey SB, Ghosh SS et al (2008) Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation. J Colloid Interface Sci 326(1):129–137

    Article  Google Scholar 

  26. Kim J, Rheem Y, Yoo B et al (2010) Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater 6(7):2681–2689

    Article  Google Scholar 

  27. Wangoo N, Bhasin KK, Mehta SK et al (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254

    Article  Google Scholar 

  28. Tan YN, Lee JY, Wang DIC (2008) Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solution. J Phys Chem C 112(14):5463–5470

    Article  Google Scholar 

  29. Liu ZG, Zu YG, Fu YJ et al (2010) Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic. Colloids Surf B 76(1):311–316

    Article  Google Scholar 

  30. Khan Z, Talib A (2010) Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentrations. Colloids Surf B 76(1):164–169

    Article  Google Scholar 

  31. Si S, Bhattacharjee RR, Banerjee A et al (2006) A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides. Chem Eur J 12(4):1256–1265

    Article  Google Scholar 

  32. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem Eur J 13(11):3160–3168

    Article  Google Scholar 

  33. Cheng LC, Huang JH, Chen HM et al (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22(5):2244–2253

    Article  Google Scholar 

  34. Song HP, Li XG, Sun JS et al (2007) Biosorption equilibrium and kinetics of Au(III) and Cu (II) on magnetotactic bacteria. Chin J Chem Eng 15(6):847–854

    Article  Google Scholar 

  35. Wang YH, Gao H, Sun JS et al (2011) Selective reinforced competitive biosorption of Ag(I) and Cu(II) on magnetospirillum gryphiswaldense. Desalination 270(1–3):258–263

    Article  Google Scholar 

  36. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  Google Scholar 

  37. Mitra RN, Das PK (2008) In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles. J Phys Chem C 112(22):8159–8166

    Article  Google Scholar 

  38. Wang X, Egan CE, Zhou M et al (2007) Effective gel for gold nanoparticle formation, support and metal oxide templating. Chem Commun 29(29):3060–3062

    Article  Google Scholar 

  39. Philip D (2008) Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim Acta A 71(1):80–85

    Article  Google Scholar 

  40. Polavarapu L, Xu QH (2008) A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. Nanotechnology 19(7):075601

    Article  Google Scholar 

  41. Wangoo N, Bhasin KK, Mehta SK et al (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254

    Article  Google Scholar 

  42. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions 2. Improved control of particle size and shape. Chem Mater 12(2):306–313

    Article  Google Scholar 

  43. Kannan P, John SA (2008) Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology 19(8):085602–085611

    Article  Google Scholar 

  44. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A 77(4):807–810

    Article  Google Scholar 

  45. Bourg MC, Badia A, Lennox RB (2000) Gold sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J Phys Chem B 104(28):6562–6567

    Article  Google Scholar 

  46. Wagner CD, Riggs WM, Davies LE et al (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  47. Wu HL, Chen CH, Huang MH (2009) Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater 21(1):110–114

    Article  Google Scholar 

  48. Chen SH, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007

    Article  Google Scholar 

  49. Chen SH, Carroll DL (2004) Silver Nanoplates: size control in two dimensions and formation mechanisms. J Phys Chem B 108(18):5500–5506

    Article  Google Scholar 

  50. Germain V, Li J, Ingert D et al (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107(34):8717–8720

    Article  Google Scholar 

  51. Rodriguez-Gonzalez B, Pastoriza-Santos I, Liz-Marzan LM (2006) Bending contours in silver nanoprisms. J Phys Chem B 110(24):11796–11799

    Article  Google Scholar 

  52. Cao XL, Fischer G (1999) Infrared spectral, structural, and conformational studies of zwitterionic l-tryptophan. J Phys Chem A 103(48):9995–10003

    Article  Google Scholar 

  53. Ivanova BB (2006) IR-LD spectroscopic characterization of l-tryptophan containing dipeptides. Spectrochim Acta Part A 64(4):931–938

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Independent Innovation Foundation of Tianjin University (No. 2016XZC-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Liu, G., Fu, S. et al. Gold Nanoparticles of Multiple Shapes Synthesized in l-Tryptophan Aqueous Solution. Trans. Tianjin Univ. 24, 401–414 (2018). https://doi.org/10.1007/s12209-018-0141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-018-0141-y

Keywords

Navigation