Skip to main content
Log in

Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium of Three Binary Systems Containing Chlorobenzene at 50.00 and 101.33 kPa

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Isobaric vapor–liquid equilibrium (VLE) data for three binary systems, chlorobenzene + N,N-dimethylformamide, chlorobenzene + furfural, and chlorobenzene + benzaldehyde, were measured at 50.00 and 101.33 kPa using a modified Rose–Williams still. Gas chromatography was used to analyze the compositions of the samples and no azeotropic behavior was found. All of the measured VLE values were checked by the semi-empirical method proposed by Herington and the point-to-point Van Ness test method modified by Fredenslund. The experimental data were correlated by using the Wilson, the non-random two-liquid and universal quasi-chemical activity coefficient models. The corresponding parameters for the three models were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fredenslund A, Gmehling J, Rasmussen P et al (1977) CHAPTER 5—determination of unifac parameters. Vapor–liquid equilibria using unifac. pp 65–85

  2. Hansen HK, Rasmussen P, Fredenslund A et al (1991) Vapor–liquid equilibria by UNIFAC group contribution. 5. Revision and extension. Ind Eng Chem Res 30(10):2352–2355

    Article  Google Scholar 

  3. Dejoz A, Gonzalez-Alfaro V, Llopis FJ et al (1997) Isobaric vapor–liquid equilibrium of binary mixtures of 1-propanol + chlorobenzene and 2-propanol + chlorobenzene. Fluid Phase Equilibr 134(1):151–161

    Article  Google Scholar 

  4. Dejoz A, Gonzalez-Alfaro V, Llopis FJ et al (1998) Phase equilibria and variation of the azeotropic composition with pressure for binary mixtures of 1-propanol + chlorobenzene and 1-butanol + chlorobenzene. Fluid Phase Equilibr 145(2):287–299

    Article  Google Scholar 

  5. Artigas H, Lafuente C, Tovar CA et al (1997) Isobaric vapour–liquid equilibrium for the binary systems of 2-butanol with some halohydrocarbons at 40.0 and 101.3 kPa. Thermochim Acta 306(1–2):85–92

    Article  Google Scholar 

  6. Dejoz A, Gonzalez-Alfaro V, Llopis FJ (1998) Vapor–liquid equilibrium of binary mixtures of chlorobenzene with 3-methyl-1-butanol, 3-methyl-2-butanol and 2-methyl-2-butanol, at 100 kPa. Fluid Phase Equilibr 153(2):265–277

    Article  Google Scholar 

  7. VittalPrasad TE, Reddi DG, Prasad DH (2000) Vapor–liquid equilibria for chlorobenzene with butan-1-ol, 2-methylpropan-1-ol and 2-methylpropan-2-ol at 94.6 kPa. Phys Chem Liq 38(6):635–641

    Article  Google Scholar 

  8. Al-Hayan MNM, Al-Kandary JAM (2006) Isobaric vapour–liquid equilibria for binary mixtures of n-heptane with bromobenzene, chlorobenzene and fluorobenzene at atmospheric pressure. Fluid Phase Equilibr 240(1):109–113

    Article  Google Scholar 

  9. RodriGuez S, Artigas H, Pardo J et al (1999) Isobaric vapour–liquid equilibrium of binary mixtures of some cyclic ethers with chlorobenzene at 40.0 and 101.3 kPa. Thermochim Acta 336(1–2):85–92

    Article  Google Scholar 

  10. Munoz R, Monton JB, Burguet MC et al (2005) Phase equilibria in the systems isobutyl alcohol plus N,N-dimethylformamide, isobutyl acetate plus N,N-dimethylformamide and isobutyl alcohol plus isobutyl acetate plus N,N-dimethylformamide at 101.3 kPa. Fluid Phase Equilibr 232(12):62–69

    Article  Google Scholar 

  11. Tai WP, Lee HY, Lee MJ (2014) Isothermal vapor–liquid equilibrium for binary mixtures containing furfural and its derivatives. Fluid Phase Equilibr 384:134–142

    Article  Google Scholar 

  12. Yang SK, Wang XJ, Zhu Y et al (2013) Isobaric vapor–liquid equilibrium data of the binary systems of octane with p, o, m-xylene at 20 kPa. Fluid Phase Equilibr 344:1–5

    Article  Google Scholar 

  13. Jin ZL, Hu AB, Liu KY (1991) Isobaric vapor–liquid equilibria for the binary and ternary systems of benzene, toluene and xylene. Chem Eng 6:56–60 (in Chinese)

    Google Scholar 

  14. Li H, Han MG, Gao X et al (2014) Isobaric vapor–liquid equilibrium for binary system of cinnamaldehyde plus benzaldehyde at 10, 20 and 30 kPa. Fluid Phase Equilibr 364:62–66

    Article  Google Scholar 

  15. Ma PS, Chang HY (2009) Chemical engineering thermodynamics. Chemical Industry Press, Beijing, pp 271–276 (in Chinese)

    Google Scholar 

  16. Stull DR (1947) Vapor pressure of pure substances-organic compounds. Ind Eng Chem 39:517–540

    Article  Google Scholar 

  17. Redlich O, Kwong JNS (1949) On the thermodynamics of solutions. V. an equation of state. fugacities of gaseous solutions. Chem Rev 44(1):233–244

    Article  Google Scholar 

  18. Amdur I, Mason EA (1958) Properties of gases at very high temperatures. Phys Fluids 1(5):370–383

    Article  MathSciNet  Google Scholar 

  19. Yen LC, Woods SS (1966) A generalized equation for computer calculation of liquid densities. AIChE J 12(1):95–99

    Article  Google Scholar 

  20. Jackson PL, Wilsak RA (1995) Thermodynamic consistency tests based on the Gibbs–Duhem equation applied to isothermal, binary vapor–liquid equilibrium data: data evaluation and model testing. Fluid Phase Equilibr 103(2):155–197

    Article  Google Scholar 

  21. Kang JW, Diky V, Chirico RD et al (2010) Reply to comments by J. Wisniak on J. Chem. Eng. Data 2010, 55, 3631–3640. J Chem Eng Data 55(11):5395

    Article  Google Scholar 

  22. Wilson GM (1964) Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J Am Chem Soc 86(2):127–130

    Article  Google Scholar 

  23. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14(1):135–144

    Article  Google Scholar 

  24. Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 21(1):116–128

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by State Key Laboratory of Chemical Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhou, F. & Xu, C. Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium of Three Binary Systems Containing Chlorobenzene at 50.00 and 101.33 kPa. Trans. Tianjin Univ. 24, 8–15 (2018). https://doi.org/10.1007/s12209-017-0096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0096-4

Keywords

Navigation