Skip to main content

Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations

  • Chapter
  • First Online:
Adsorption Processes for Water Treatment and Purification

Abstract

Adsorption is a fundamental unit operation used for several purposes in the academy and industry. Particularly, adsorption in liquid phase is used to remove recalcitrant compounds from effluents (dyes, heavy metals, phenols, pharmaceuticals, and others), to recover valuable metals from leachates (gold, silver, cobalt, and others), and to purify products during the industrial processing (fuels, juices, liquors, wines, and others). For all these applications, the obtainment, modeling, and interpretation of the equilibrium isotherms are a key and fundamental study. Based on the abovementioned, this chapter presents the particularities of adsorption equilibrium isotherms in liquid phase from scientific and technological viewpoints. From the scientific viewpoint, the importance of adsorption isotherms will be addressed. For example, the equilibrium isotherms provide parameters for decision-making of the researcher in relation to the adsorption capacity of a particular adsorbent, give an idea how the interaction of adsorbent–adsorbate occurs, and provide means to find thermodynamic parameters, among others. From technological viewpoint, the adsorption capacity of the material is a basic parameter for the project. Thus, in this chapter the following points are highlighted: experimental procedures to obtain equilibrium curves, isotherm analysis, models used to correlate the equilibrium data and interpretation of its parameters, regression methods (comparison between linear and nonlinear regression methods), error analysis, adsorption thermodynamics, and the use of these data for equipment design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ghouti MA, Allen SJ, Ahmad MN (2003) The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manag 69:229–238

    Article  CAS  Google Scholar 

  • Al-Qodah Z, Shawaqfeh AT, Lafi WK (2007) Two-resistance mass transfer model for the adsorption of the pesticide deltamethrin using acid treated oil shale ash. Adsorption 13:73–82

    Article  CAS  Google Scholar 

  • Anandkumar J, Mandal B (2011) Adsorption of chromium (VI) and rhodamine B by surface modified tannery waste: kinetic, mechanistic and thermodynamic studies. J Hazard Mat 186:1088–1096

    Article  CAS  Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918

    Article  Google Scholar 

  • ASTM D3860-98 (2008) Standard practice for determination of adsorptive capacity of activated carbon by aqueous phase isotherm technique. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM D4607-94 (2006) Standard test method for determination of iodine number of activated carbon. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  • Atkins P, De Paula J (2006) Atkins’ physical chemistry. Oxford University Press, New York

    Google Scholar 

  • Baccar R, Blánque P, Bouzid J, Feki M, Sarrá M (2010) Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem Eng J 165:457–464

    Article  CAS  Google Scholar 

  • Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press Taylor & Francis Group, New York

    Book  Google Scholar 

  • Bergmann CP, Machado FM (eds) (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Cham

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cadaval TRS Jr, Dotto GL, Seus ER, Mirlean N, Pinto LAA (2016) Vanadium removal from aqueous solutions by adsorption onto chitosan films. Desalin Water Treat 57:16583–16591

    Article  CAS  Google Scholar 

  • Chen Y, Zhang D (2014) Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium bracteatum Thunb leaves on NKA-2 resin. Chem Eng J 254:579–585

    Article  CAS  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Google Scholar 

  • Dotto GL, Moura JM, Cadaval TRS Jr, Pinto LAA (2013) Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem Eng J 214:8–16

    Article  CAS  Google Scholar 

  • Dotto GL, Nascimento dos Santos JM, Rosa R, Pinto LAA, Pavan FA, Lima EC (2015a) Fixed bed adsorption of methylene blue by ultrasonic surface modified chitin supported on sand. Chem Eng Res Des 100:302–310

    Article  CAS  Google Scholar 

  • Dotto GL, Sharma SK, Pinto LAA (2015b) Biosorption of organic dyes: research opportunities and challenges. In: Sharma SK (ed) Green chemistry for dyes removal from waste water: research trends and applications. Wiley, Hoboken, pp 295–329

    Chapter  Google Scholar 

  • Dotto GL, Sellaoui L, Lima EC, Ben Lamine A (2016a) Physicochemical and thermodynamic investigation of Ni(II) biosorption on various materials using the statistical physics modeling. J Mol Liq 220:129–135

    Article  CAS  Google Scholar 

  • Dotto GL, Meili L, de Souza Abud AK, Tanabe EH, Bertuol DA, Foletto EL (2016b) Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni(II) from aqueous solutions. Water Sci Technol 73:2713–2721

    Article  Google Scholar 

  • Dotto GL, Rodrigues FK, Tanabe EH, Fröhlich R, Bertuol DA, Martins TR, Foletto EL (2016c) Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J Environ Chem Eng 4:3230–3239

    Article  CAS  Google Scholar 

  • Ebadi A, Soltan Mohammadzadeh JS, Khudiev A (2007) Adsorption of methyl tert-butyl ether on perfluorooctyl alumina adsorbents-high concentration range. Chem Eng Technol 30:1666–1673

    Article  CAS  Google Scholar 

  • Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15:65–73

    Article  CAS  Google Scholar 

  • Edgehill RU (1998) Adsorption characteristics of carbonized bark for phenol and pentachlorophenol. J Chem Technol Biot 71:27–34

    Article  CAS  Google Scholar 

  • El-Khaiary MI, Malash GF (2011) Common data analysis errors in batch adsorption studies. Hydrometallurgy 105:314–320

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:1100–1107

    Google Scholar 

  • Geankoplis CJ (1998) Procesos de transporte y operaciones unitarias. Compañía Editorial Continental, Ciudad de México

    Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 3973–3993

    Google Scholar 

  • Hang TP, Brindley GW (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities. Clay Miner 18:203–212

    Article  Google Scholar 

  • Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mat 181:1039–1050

    Article  CAS  Google Scholar 

  • Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39:922–932

    Article  CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52–60

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li Q, Yue QY, Su Y, Gao BY, Sun HJ (2010) Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem Eng J 158:489–497

    Article  CAS  Google Scholar 

  • Lian L, Guo L, Guo C (2009) Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazard Mat 161:126–131

    Article  CAS  Google Scholar 

  • Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985

    Article  CAS  Google Scholar 

  • Marsal A, Bautista E, Ribosa I, Pons R, García MT (2009) Adsorption of polyphenols in wastewater by organo-bentonites. Appl Clay Sci 44:151–155

    Article  CAS  Google Scholar 

  • Milonjic SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72:1363–1367

    Article  CAS  Google Scholar 

  • Nabais JV, Mouquinho A, Galacho C, Carrott PJM, Ribeiro Carrott MML (2008) In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres. Fuel Process Technol 89:549–555

    Article  CAS  Google Scholar 

  • Nunes AA, Franca AS, Oliveira LS (2009) Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresour Technol 100:1786–1792

    Article  CAS  Google Scholar 

  • Piccin JS, Vieira MLG, Gonçalves JO, Dotto GL, Pinto LAA (2009) Adsorption of FD&C red no. 40 by chitosan: isotherm analysis. J Food Eng 95:16–20

    Article  CAS  Google Scholar 

  • Piccin JS, Dotto GL, Vieira MLG, Pinto LAA (2011) Kinetics and mechanism of the food dye FD&C red 40 adsorption onto chitosan. J Chem Eng Data 56:3759–3765

    Article  CAS  Google Scholar 

  • Piccin JS, Feris LA, Cooper M, Gutterres M (2013) Dye adsorption by leather waste: mechanism diffusion, nature studies, and thermodynamic data. J Chem Eng Data 58:873–882

    Article  CAS  Google Scholar 

  • Redlich OJDL, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1024

    Article  CAS  Google Scholar 

  • Rodrigues AE (2015) Simulated moving bed technology: principles, design and process applications. Elsevier, Amsterdam

    Google Scholar 

  • Rouquerol F, Rouquerol J, Sing KSW (eds) (2014) Adsorption by powders and porous solids: principles, methodology and applications. Elsevier, Amsterdam

    Google Scholar 

  • Russo ME, Di Natale F, Prigione V, Tigini V, Marzocchella A, Varese GC (2010) Adsorption of acid dyes on fungal biomass: equilibrium and kinetics characterization. Chem Eng J 162:537–545

    Article  CAS  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  • Saad MEK, Khiari R, Elaloui E, Moussaoui Y (2014) Adsorption of anthracene using activated carbon and Posidonia oceanica. Arab J Chem 7:109–113

    Article  Google Scholar 

  • Sahadevan R, Mahendradas DK, Shanmugasundaram V, Shanmugam K, Velan M (2009) Sorption kinetics and equilibrium analysis for the removal of Reactive Red 2 and Reactive Blue 81 dyes from synthetic effluents using dried soya bean meal. Int J Chem React Eng 7:A33

    Google Scholar 

  • Shafeeyan MS, Daud WMAW, Shamiri A (2014) A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem Eng Res Des 92:961–988

    Article  CAS  Google Scholar 

  • Smith JM, Van Ness HC, Abbott MM (2005) Introduction to chemical engineering thermodynamics. McGraw-Hill, Columbus

    Google Scholar 

  • Suzuki M (1993) Fundamentals of adsorption. Elsevier, Amsterdam

    Google Scholar 

  • Van den Hul HJ, Lyklema J (1968) Determination of specific surface areas of dispersed materials. Comparison of the negative adsorption method with some other methods. J Am Chem Soc 90:3010–3015

    Article  Google Scholar 

  • Vázquez G, González-Álvarez J, Garcia AI, Freire MS, Antorrena G (2007) Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics. Bioresour Technol 98:1535–1540

    Article  Google Scholar 

  • Vieira MLG, Esquerdo VM, Nobre LR, Dotto GL, Pinto LAA (2014) Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J Ind Eng Chem 20:3387–3393

    Article  CAS  Google Scholar 

  • Weber CT, Collazzo GC, Mazutti MA, Foletto EL, Dotto GL (2014) Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds. Water Sci Technol 70:102–107

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung W, McKay G (2004) Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochem 39:695–704

    Article  Google Scholar 

  • Worch E (2008) Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. J Water Supply Res T 57:171–183

    Article  CAS  Google Scholar 

  • Yousef RI, El-Eswed B, Ala’a H (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem Eng J 171:1143–1149

    Article  CAS  Google Scholar 

  • Yuvaraja G, Krishnaiah N, Subbaiah MV, Krishnaiah A (2014) Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloid Surf B 114:75–81

    Article  CAS  Google Scholar 

  • Zhang Y, Yan L, Xu W, Guo X, Cui L, Gao L, Wei Q, Du B (2014) Adsorption of Pb (II) and Hg (II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq 191:177–182

    Article  CAS  Google Scholar 

  • Zhang Y, Wang W, Zhang J, Liu P, Wang A (2015) A comparative study about adsorption of natural palygorskite for methylene blue. Chem Eng J 262:390–398

    Article  CAS  Google Scholar 

  • Zhou X, Liu H, Hao J (2012) How to calculate the thermodynamic equilibrium constant using the Langmuir equation. Adsorpt Sci Technol 30:647–649

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Luiz Dotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Piccin, J.S., Cadaval, T.R.S., de Pinto, L.A.A., Dotto, G.L. (2017). Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations. In: Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Ávila, H. (eds) Adsorption Processes for Water Treatment and Purification . Springer, Cham. https://doi.org/10.1007/978-3-319-58136-1_2

Download citation

Publish with us

Policies and ethics