Skip to main content
Log in

Effect of NaOH Treatment on Catalytic Performance of ZSM-5 in Cyclohexene Hydration

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

ZSM-5 zeolite prepared by a hydrothermal method with the addition of seeds was treated with different concentrations of NaOH. The obtained samples were characterized by XRD, N2 adsorption, NH3-TPD, FT-IR, SEM, and studied in the catalytic performance of the hydration of cyclohexene to cyclohexanol. The characterization results showed that with the increase of NaOH concentration, the crystallinity of the treated samples decreased monotonously, and the acid sites of ZSM-5 zeolites first increased and then decreased, while more mesopores formed inside the ZSM-5 zeolites. The experimental results of catalytic performance showed that cyclohexene conversion can be improved through introducing the mesopores and enhancing the acidity of ZSM-5 with the NaOH treatment at a low concentration. The highest cyclohexene conversion of 12.8% was obtained when the concentrations of NaOH solution were in the range of 0.2–0.6 mol/L. The selectivity of cyclohexanol on all samples was higher than 99.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahajani SM, Sharma MM, Sridhar T (1999) Uncatalysed oxidation of cyclohexene. Chem Eng Sci 54(18):3967–3976

    Article  Google Scholar 

  2. Wen Y, Potter OE, Sridhar T (1997) Uncatalysed oxidation of cyclohexane in a continuous reactor. Chem Eng Sci 52(24):4593–4605

    Article  Google Scholar 

  3. Zhang H, Mahajani SM, Sharma MM et al (2002) Hydration of cyclohexene with solid acid catalysts. Chem Eng Sci 57(3):315–322

    Article  Google Scholar 

  4. Ishida H (1997) Liquid-phase hydration process of cyclohexene with zeolites. Catal Surv Asia 1(2):241–246

    Article  Google Scholar 

  5. Shan XL, Cheng ZM, Yuan PQ (2011) Reaction kinetics and mechanism for hydration of cyclohexene over ion-exchange resin and H-ZSM-5. Chem Eng J 175(15):423–432

    Article  Google Scholar 

  6. Fang DR, Lu JY, Zhang HM et al (2013) Catalysts for hydration of cyclohexene to cyclohexanol. Chem Res Chin Univ 29(4):743–746

    Article  Google Scholar 

  7. Imam RA, Freund H, Guit RPM et al (2013) Evaluation of different process concepts for the indirect hydration of cyclohexene to cyclohexanol. Org Process Res Dev 17(3):343–358

    Article  Google Scholar 

  8. Li J, Yang LH, Li F et al (2015) Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids. Reaction Kinet Mech Catal 114(1):173–183

    Article  Google Scholar 

  9. Chakrabarti A, Sharma MM (1992) Cyclohexanol from cyclohexene via cyclohexyl acetate: catalysis by ion-exchange resin and acid-treated clay. React Polym 18(2):107–115

    Article  Google Scholar 

  10. Tang Y, Li BJ, Zhang N et al (2012) Growth of ZSM-5 zeolite microparticles from crystal seeds for catalytic hydration of cyclohexene. CrystEngComm 14:3854–3857

    Article  Google Scholar 

  11. Okuhara T, Kimura M, Nakato T (1997) Hydration of olefins in excess water catalyzed by an insoluble cesium hydrogen salt of dodecatungstophosphoric acid. Chem Lett 8:839–840

    Article  Google Scholar 

  12. Nakato T, Toyoshi Y, Kimura M et al (1999) Unique catalysis of an acidic salt of heteropoly acid, Cs2.5H0.5PW12O40, consisting of microcrystallites. Catal Today 52(1):23–28

    Article  Google Scholar 

  13. Takamatsu Y, Kaneshima T (2003) Process for the preparation of cyclohexanol: US, 6552235 [P]. 2003-04-22

  14. Ogawa H, Hosoe T, Hao X et al (2001) The addition of water and alcohol to alkenes by alkyl-immobilized zeolite catalysts in the liquid phase. Stud Surf Sci Catal 132:913–916

    Article  Google Scholar 

  15. Ma BL, Chun Y, Zhou W et al (2005) Amphiphilic HZSM-5 zeolite catalyst for hydration of cyclohexene on phase-boundary interface. Chem J Chin Univ 26(4):731–736

    Google Scholar 

  16. Xing J, Song L, Zhang C et al (2015) Effect of acidity and porosity of alkali-treated ZSM-5 zeolite on eugenol hydrodeoxygenation. Catal Today 258:90–95

    Article  Google Scholar 

  17. Groen JC, Peffer LAA, Moulijn JA et al (2004) Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf A Physicochem Eng Asp 241(1/2/3):53–58

    Article  Google Scholar 

  18. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121–2131

    Article  Google Scholar 

  19. Groen JC, Moulijn JA, Pérez-Ramírez J (2007) Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind Eng Chem Res 46(12):4193–4201

    Article  Google Scholar 

  20. Ogura M, Shinomiya SY, Tateno J et al (2001) Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A 219(1/2):33–43

    Article  Google Scholar 

  21. Jia AZ, Lou LL, Zhang C et al (2009) Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts. J Mol Catal A Chem 306(1/2):123–129

    Article  Google Scholar 

  22. Mochizuki H, Yokoi T, Imai H et al (2012) Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A 449:188–197

    Article  Google Scholar 

  23. Zhao L, Gao JS, Xu CM et al (2011) Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking. Fuel Process Technol 92(3):414–420

    Article  Google Scholar 

  24. Fathi S, Sohrabi M, Falamaki C (2014) Improvement of HZSM-5 performance by alkaline treatments: comparative catalytic study in the MTG reactions. Fuel 116:529–537

    Article  Google Scholar 

  25. Zhu XL, Lobban LL, Mallinson RG et al (2010) Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal. J Catal 271(1):88–98

    Article  Google Scholar 

  26. Jung JS, Park JW, Seo G (2005) Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl Catal A 288(1/2):149–157

    Article  Google Scholar 

  27. Bjørgen M, Joensen F, Holm MS et al (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A 345(1):43–50

    Article  Google Scholar 

  28. Gayubo AG, Alonso A, Valle B et al (2010) Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. Appl Catal B 97(1/2):299–306

    Article  Google Scholar 

  29. Groen JC, Peffer LAA, Mouliji JA et al (2004) On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater 69(1/2):29–34

    Article  Google Scholar 

  30. Meng FH, Wang YQ, Wang LN et al (2011) Influence of Br and Na+ in synthesis of Silicalite-1 on catalytic performance in vapor phase Beckmann rearrangement of cyclohexanone oxime. J Mol Catal A Chem 335(1/2):105–111

    Article  Google Scholar 

  31. Rutkowska M, Macina D, Mirocha-Kubień N et al (2015) Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol. Appl Catal B 174–175:336–343

    Article  Google Scholar 

  32. Suzuki T, Okuhara T (2001) Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution. Microporous Mesoporous Mater 43(1):83–89

    Article  Google Scholar 

  33. Song YQ, Zhu XX, Song Y et al (2006) An effective method to enhance the stability on-stream of butene aromatization: post-treatment of ZSM-5 by alkali solution of sodium hydroxide. Appl Catal A 302(1):69–77

    Article  Google Scholar 

  34. Na JD, Liu GZ, Zhou TY et al (2013) Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization. Catal Lett 143(3):267–275

    Article  Google Scholar 

  35. Phu NH, Hoa TTK, Tan NV et al (2001) Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions. Appl Catal B 34(4):267–275

    Article  Google Scholar 

  36. Tao Y, Kanoh H, Kaneko K (2006) Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption 12(5/6):309–316

    Article  Google Scholar 

  37. Coudurier G, Naccache C, Vedrine JC (1982) Uses of I.R. spectroscopy in identifying ZSM zeolite structure. J Chem Soc Chem Commun 24:1413–1415

    Article  Google Scholar 

  38. Zecchina A, Bordiga S, Spoto G et al (1992) Silicalite characterization. 1. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes. J Phys Chem 96(12):4985–4990

    Article  Google Scholar 

  39. Gil B, Mokrzycki Ł, Sulikowski B et al (2010) Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catal Today 152(1/2/3/4):24–32

    Article  Google Scholar 

  40. Sadowska K, Góra-Marek K, Datka J (2012) Hierarchic zeolites studied by IR spectroscopy: acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vib Spectrosc 63:418–425

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the National Natural Science Foundation of China (No. 21276183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaquan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Meng, F. et al. Effect of NaOH Treatment on Catalytic Performance of ZSM-5 in Cyclohexene Hydration. Trans. Tianjin Univ. 23, 43–50 (2017). https://doi.org/10.1007/s12209-016-0020-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-0020-3

Keywords

Navigation