Skip to main content
Log in

Accelerated matrix recovery via random projection based on inexact augmented Lagrange multiplier method

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509.

    Article  MATH  Google Scholar 

  2. Zhang C J, Liu J, Tian Q et al. Image classification by nonnegative sparse coding, low-rank and sparse decomposition[C]. In: International Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011.

    Google Scholar 

  3. Ji H, Huang S B, Shen Z W et al. Robust video restoration by joint sparse and low rank matrix approximation[J]. SIAM Journal on Imaging Sciences, 2011, 4(4): 1122–1142.

    Article  MathSciNet  MATH  Google Scholar 

  4. Eckart C, Young G. The approximation of one matrix by another of lower rank[J]. Psychometrika, 1936, 1(3): 211–218.

    Article  MATH  Google Scholar 

  5. Jolliffe I T. Principal Component Analysis[M]. Springer-Verlag, New York, USA, 1986.

    Google Scholar 

  6. Wright J, Ganesh A, Rao S et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[C]. In: Neural Information Processing Systems. Vancouver and Whistler, Canada, 2009.

    Google Scholar 

  7. Candès E J, Li X D, Ma Y et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1–37.

    Article  Google Scholar 

  8. Ganesh A, Wright J, Li X D et al. Dense error correction for low-rank matrices via principal component pursuit[C]. In: IEEE International Symposium on Information Theory. Austin, USA, 2010.

    Google Scholar 

  9. Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(5): 3047–3064.

    Article  MathSciNet  Google Scholar 

  10. Toh K C, Yun S W. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615–640.

    MathSciNet  MATH  Google Scholar 

  11. Wright J, Ganesh A, Min K et al. Compressive principal component pursuit[C]. In: IEEE International Symposium on Information Theory. Cambridge, USA, 2012.

    Google Scholar 

  12. Waters A E, Sankaranarayanan A C, Baraniuk R G. SpaRCS: Recovering low-rank and sparse matrices from compressive measurements[C]. In: Neural Information Processing Systems (NIPS). Granada, Spain, 2011.

    Google Scholar 

  13. Ganesh A, Min K, Wright J et al. Principal component pursuit with reduced linear measurements[C]. In: IEEE International Symposium on Information Theory. Cambridge, USA, 2012.

    Google Scholar 

  14. Mu Y D, Dong J, Yuan X T et al. Accelerated low-rank visual recovery by random projection[C]. In: International Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011.

    Google Scholar 

  15. Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fazel M. Matrix Rank Minimization with Applications[D]. Stanford University, 2002.

    Google Scholar 

  17. Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717–772.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin Z C, Chen M M, Ma Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Lowrank Matrices[R]. UIUC Technical Report, UILU-ENG-09-2215, 2009.

    Google Scholar 

  19. Hestenes M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4(5): 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite-element approximation[J]. Computers and Mathematics with Applications, 1976, 2(1): 17–40.

    Article  MATH  Google Scholar 

  21. Yuan X M, Yang J F. Low-rank and sparse matrix decomposition via alternating direction methods[J]. Pacific Journal of Optimization, 2013, 9(1): 167–180.

    MathSciNet  MATH  Google Scholar 

  22. He B S, Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities[J]. Operations Research Letters, 1998, 23(3–5): 151–161.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kontogiorgis S, Meyer R R. A variable-penalty alternating directions method for convex optimization[J]. Mathematical Programming, 1998, 83(1–3): 29–53.

    MathSciNet  MATH  Google Scholar 

  24. Goldfarb D, Ma S Q. Convergence of fixed point continuation algorithms for matrix rank minimization[J]. Foundations of Computational Mathematics, 2011, 11(2): 183–210.

    Article  MathSciNet  MATH  Google Scholar 

  25. Papadimitriou C H, Raghavan P, Tamaki H et al. Latent semantic indexing: A probabilistic analysis[J]. Journal of Computer and System Sciences, 2000, 61(2): 217–235.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vempala S S. The Random Projection Method[M]. American Mathematical Society, USA, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijia Cai  (蔡思佳).

Additional information

Supported by National Natural Science Foundation of China (No.51275348) and College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339).

Wang Ping, born in 1967, female, Dr, Prof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zhang, C., Cai, S. et al. Accelerated matrix recovery via random projection based on inexact augmented Lagrange multiplier method. Trans. Tianjin Univ. 19, 293–299 (2013). https://doi.org/10.1007/s12209-013-2135-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-013-2135-0

Keywords

Navigation