Skip to main content
Log in

Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The matrix rank minimization problem has applications in many fields, such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization problem (Math. Program., doi:10.1007/s10107-009-0306-5, 2009). By incorporating an approximate singular value decomposition technique in this algorithm, the solution to the matrix rank minimization problem is usually obtained. In this paper, we study the convergence/recoverability properties of the fixed-point continuation algorithm and its variants for matrix rank minimization. Heuristics for determining the rank of the matrix when its true rank is not known are also proposed. Some of these algorithms are closely related to greedy algorithms in compressed sensing. Numerical results for these algorithms for solving affinely constrained matrix rank minimization problems are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Blumensath, M.E. Davies, Gradient pursuits, IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).

    Article  MathSciNet  Google Scholar 

  2. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear Optimization (Springer, Berlin, 2003).

    Google Scholar 

  4. J. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20(4), 1956–1982 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Candès, Y. Plan, Matrix completion with noise, Proc. IEEE (2009).

  6. E.J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math. 9, 717–772 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. E.J. Candès, J. Romberg, 1-MAGIC: Recovery of sparse signals via convex programming, Tech. rep., Caltech, 2005.

  8. E.J. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion, IEEE Trans. Inf. Theory 56(5), 2053–2080 (2009).

    Article  Google Scholar 

  9. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2006).

    Article  Google Scholar 

  10. Rice compressed sensing website. http://dsp.rice.edu/cs.

  11. W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009).

    Article  MathSciNet  Google Scholar 

  12. D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article  MathSciNet  Google Scholar 

  13. D.L. Donoho, Y. Tsaig, Fast solution of 1-norm minimization problems when the solution may be sparse, IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008).

    Article  MathSciNet  Google Scholar 

  14. D. Donoho, Y. Tsaig, I. Drori, J.-C. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Tech. rep., Stanford University, 2006.

  15. P. Drineas, R. Kannan, M.W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing low-rank approximations to a matrix, SIAM J. Comput. 36, 158–183 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Fazel, H. Hindi, S. Boyd, A rank minimization heuristic with application to minimum order system approximation, in Proceedings of the American Control Conference, vol. 6 (2001), pp. 4734–4739.

    Google Scholar 

  17. M. Fazel, H. Hindi, S. Boyd, Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices, in Proceedings of the American Control Conference (2003), pp. 2156–2162.

    Google Scholar 

  18. M. Fazel, H. Hindi, S. Boyd, Rank minimization and applications in system theory, in American Control Conference (2004), pp. 3273–3278.

    Google Scholar 

  19. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process. 1, 4 (2007).

    Article  Google Scholar 

  20. L.E. Ghaoui, P. Gahinet, Rank minimization under LMI constraints: A framework for output feedback problems, in Proceedings of the European Control Conference (1993).

    Google Scholar 

  21. E.T. Hale, W. Yin, Y. Zhang, Fixed-point continuation for 1-minimization: Methodology and convergence, SIAM J. Optim. 19(3), 1107–1130 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods (Springer, New York, 1993).

    MATH  Google Scholar 

  23. R.H. Keshavan, A. Montanari, S. Oh, Matrix completion from noisy entries (2009). arXiv:0906.2027.

  24. R.H. Keshavan, A. Montanari, S. Oh, Matrix completion from a few entries, IEEE Trans. Inf. Theory 56, 2980–2998 (2010).

    Article  MathSciNet  Google Scholar 

  25. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, A method for large-scale 1-regularized least-squares, IEEE J. Sel. Top. Signal Process. 4(1), 606–617 (2007).

    Article  Google Scholar 

  26. R.M. Larsen, PROPACK—software for large and sparse SVD calculations, available from http://sun.stanford.edu/~rmunk/PROPACK.

  27. K. Lee, Y. Bresler, ADMIRA: atomic decomposition for minimum rank approximation (2009). arXiv:0905.0044.

  28. K. Lee, Y. Bresler, Efficient and guaranteed rank minimization by atomic decomposition (2009). arXiv:0901.1898v1.

  29. K. Lee, Y. Bresler, Guaranteed minimum rank approximation from linear observations by nuclear norm minimization with an ellipsoidal constraint (2009). arXiv:0903.4742.

  30. N. Linial, E. London, Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15, 215–245 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Liu, D. Sun, K.-C. Toh, An implementable proximal point algorithmic framework for nuclear norm minimization, Preprint, National University of Singapore, 2009.

  32. Z. Liu, L. Vandenberghe, Interior-point method for nuclear norm approximation with application to system identification, SIAM J. Matrix Anal. Appl. 31(3), 1235–1256 (2009).

    Article  MathSciNet  Google Scholar 

  33. S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. (2009). doi:10.1007/s10107-009-0306-5.

    Google Scholar 

  34. R. Meka, P. Jain, I.S. Dhillon, Guaranteed rank minimization via singular value projection (2009). arXiv:0909.5457.

  35. B.K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227–234 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Needell, J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal. 26, 301–321 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  37. Netfix prize website. http://www.netflixprize.com/.

  38. B. Recht, M. Fazel, P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52(3), 471–501 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Sontag, Mathematical Control Theory (Springer, New York, 1998).

    MATH  Google Scholar 

  40. N. Srebro, Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute of Technology, 2004.

  41. N. Srebro, T. Jaakkola, Weighted low-rank approximations, in Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003) (2003).

    Google Scholar 

  42. R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B 58, 267–288 (1996).

    MathSciNet  MATH  Google Scholar 

  43. K.-C. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pac. J. Optim. 6, 615–640 (2010).

    MathSciNet  MATH  Google Scholar 

  44. K.-C. Toh, M.J. Todd, R.H. Tütüncü, SDPT3—a Matlab software package for semidefinite programming, Optim. Methods Softw. 11, 545–581 (1999).

    Article  MathSciNet  Google Scholar 

  45. J. Tropp, Just relax: Convex programming methods for identifying sparse signals, IEEE Trans. Inf. Theory 51, 1030–1051 (2006).

    Article  MathSciNet  Google Scholar 

  46. E. van den Berg, M.P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput. 31(2), 890–912 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  47. W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms for 1-minimization with applications to compressed sensing, SIAM J. Imaging Sci. 1(1), 143–168 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Goldfarb.

Additional information

Communicated by Yurii Nesterov.

Research supported in part by NSF Grants DMS 06-06712 and DMS 10-16571, ONR Grants N00014-03-0514 and N00014-08-1-1118, and DOE Grants DE-FG01-92ER-25126 and DE-FG02-08ER-25856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, D., Ma, S. Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization. Found Comput Math 11, 183–210 (2011). https://doi.org/10.1007/s10208-011-9084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9084-6

Keywords

Mathematics Subject Classification (2000)

Navigation