Skip to main content
Log in

Fault-tolerant design of spaceborne mass memory system

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

A fault-tolerant spaceborne mass memory architecture is presented based on entirely commercial-off-theshelf components. The highly modularized and scalable memory kernel supports the hierarchical design and is well suited to redundancy structure. Error correcting code (ECC) and periodical scrubbing are used to deal with bit errors induced by single event upset. For 8-bit wide devices, the parallel Reed Solomon(10, 8) can perform coder/decoder calculations in one clock cycle, achieving a data rate of several Gb/s. In space environment, ECC combined with periodical scrubbing is appropriate and it reduces the word error rate by 5 orders of magnitude with 1% timing overhead and small hardware expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harboe-Sørensen R, Guerre F X, Lewis G. Heavy-ion SEE test concept and results for DDR-II memories[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2125–2130.

    Article  Google Scholar 

  2. Cardarilli G C, Ottavi M, Pontarelli S et al. Fault tolerant solid state mass memory for space applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1353–1372.

    Article  Google Scholar 

  3. Cardarilli G C, Marinucci P, Ottavi M et al. A fault-tolerant 176 Gbit solid state mass memory architecture[C]. In: Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. Yamanashi, Japan, 2000. 173–180.

  4. Underwood C I, Oldfield M K. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit[J]. IEEE Transactions on Nuclear Science, 2000, 47(4): 647–653.

    Article  Google Scholar 

  5. Cardarilli G, Leandri C, Marinucci P et al. Design of a fault tolerant solid state mass memory[J]. IEEE Transactions on Reliability, 2003, 52(4): 476–491.

    Article  Google Scholar 

  6. Wilhelm W. A new scalable VLSI architecture for Reed-Solomon decoders[J]. IEEE Journal of Solid-State Circuits, 1999, 34(3): 388–396.

    Article  Google Scholar 

  7. Parrotta B, Rebaudengo M, Reorda M S et al. New techniques for accelerating fault injection in VHDL descriptions[C]. In: Proceedings of the 6th IEEE International On-Line Testing Workshop. Los Alamitos, CA, USA, 2000. 61–66.

  8. Cardarilli G C, Ottavi M, Pontarelli S et al. Data integrity evaluations of Reed-Solomon codes for storage systems[C]. In: Proceedings of IEEE International Symposium on Defect Fault Tolerance in VLSI Systems. Cannes, France, 2004. 158–164.

  9. Saleh A M, Serrano J J, Patel J H. Reliability of scrubbing recovery-techniques for memory systems[J]. IEEE Transactions on Reliability, 1990, 39(1): 114–122.

    Article  MATH  Google Scholar 

  10. Gärtner M, Gliem F, Keller H U. Semiconductor image memory for the MARS 94 Mission[C]. In: Proceedings of the 41st Congress of the International Astronautical Federation. Dresden, GDR, 1990.

  11. Chowdhury D R, Gupta I S, Chaudhuri P P. CA-based byte error-correcting code[J]. IEEE Transactions on Computers, 1995, 44(3): 371–382.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning Zhang  (张宇宁).

Additional information

Supported by Innovative Program of Chinese Academy of Sciences (No. KGCY-SYW-407-02) and Grand International Cooperation Foundation of Shanghai Science and Technology Commission (No. 052207046).

ZHANG Yuning, born in 1981, male, Dr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chang, L., Yang, G. et al. Fault-tolerant design of spaceborne mass memory system. Trans. Tianjin Univ. 16, 17–21 (2010). https://doi.org/10.1007/s12209-010-0004-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-010-0004-7

Keywords

Navigation