Skip to main content
Log in

Numerical comprehensive optimization and evaluation on ballistic behavior of ceramic/FRP composites based on AHP model

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Multi-layer ceramic/fiber reinforced polymer (FRP) composite, especially Al2O3/carbon-aramid hybrid FRP composite, is a common ceramic composite armor system (CCAS) in the protection field. Aiming at selecting an optimal configuration from several schemes with different discrete structural parameters, including the thickness ratio of carbon fiber (CF) to aramid fiber (AF), the prepreg’s number of layers (PNL) of CF and AF, etc., a two-step comprehensive optimization and evaluation method is proposed based on the parametrical study of the ballistic behavior and improved analytical hierarchy process (AHP) conducted by finite element analysis (FEA) and Python programming, respectively. The results demonstrate the effectiveness of this two-step methodology despite the influence of these discrete factors on the ballistic behavior is intricate. Besides, when the PNL is less, the configuration with the PNL of CF is 8, the thickness ratio of CF to AF is 3:7 and the PNL of AF is 14 is the desirable design scheme with the highest comprehensive ballistic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

t 0, t C, t A :

Thickness of cohesive layer, CF and AF

σ :

Normalized equivalent von Mises stress

σ i , σ f :

Equivalent intact and fracture stress

A, B, C, M, N :

Material constants for ceramic

P , T :

Normalized actual pressure and tensile pressure

\(\dot{\varepsilon}\) :

Temperature or Celsius temperature scale

μ :

Compressive volumetric strain

K 1, K 2, K 3 :

Material constants for EOS

P, ΔP :

Pressure and its increment

D :

Damage variable for ceramic

D 1, D 2 :

Damage coefficients for ceramic

\(\Delta\overline{\varepsilon}^{\text{pl}}\) :

Increment of equivalent plastic strain

\(\overline{\varepsilon}_{f}^{\text{pl}}(P)\) :

Fracture equivalent plastic strain

β :

Bulking factor

HEL :

Hugoniot elastic limit

P HEL :

Pressure at HEL

ρ :

Density

E :

Elastic modulus

G :

Shear modulus

ν :

Poisson’s ratio

X, Y, Z :

Longitudinal, transverse and normal strength

S :

Shear strength

t :

Nominal stress vector

K :

Stiffness vector

δ :

Displacement vector

G C :

Fracture energy

σ b :

Tensile strength for cohesive layer

σ s :

Tensile yield strength for cohesive layer

ε f :

Tensile failure strain for cohesive layer

v 0, v r :

Initial impact velocity and residual velocity

v bl :

Ballistic limit velocity

F d :

Delamination factor

F da :

Adjusted delamination factor

R max :

Maximum radius of delamination area

R nom :

Nominal radius of bullet hole

A del :

Cumulative peripheral delamination area

A max, A nom :

Areas belonging to Rmax and Rnom

A :

PCM of criteria in criterion layer

B (k) :

PCM of alternatives for criterion k

α, β (k) :

Non-normalized column weight vector

w (A) :

Weight vector of PCM A

\(\boldsymbol{w}^{(B^{(k)})}\) :

Weight vectors of PCM B(k)

CR :

Consistency ration

RI :

Random consistency index

CI :

Consistency index

λ max(A):

Maximum eigenvalue of PCM A

W :

Comprehensive grade vector

W′:

Modified comprehensive grade vector

References

  1. B. Zhang, Y. Wang, S. Du, Z. Yang, H. Cheng and Q. Fan, An analysis of bi-layer ceramic armor and optimization of protection efficiency, Materials & Design, 203 (2021) 109633.

    Article  Google Scholar 

  2. L. Peng, M. T. Tan, X. Zhang, G. Han, W. Xiong, M. A. Teneiji and Z. W. Guan, Investigations of the ballistic response of hybrid composite laminated structures, Composite Structures, 282 (2022) 115019.

    Article  Google Scholar 

  3. V. V. Kumar, S. Rajendran, G. Balaganesan, S. Surendran, A. Selvan and S. Ramakrishna, High velocity impact behavior of hybrid composite under hydrostatic preload, Journal of Composite Materials, 56(24) (2022) 3769–3779.

    Article  Google Scholar 

  4. C. Wu, Y. Li and C. Wan, Reactive-sintering B4C matrix composite for armor applications, Rare Metals, 39(5) (2020) 529–544.

    Article  Google Scholar 

  5. S. Kumar, K. Akella, M. Joshi, A. Tewari and N. K. Naik, Performance of ceramic-composite armors under ballistic impact loading, Journal of Materials Engineering and Performance, 29(9) (2020) 5625–5637.

    Article  Google Scholar 

  6. G. Sun, S. Tong, D. Chen, Z. Gong and Q. Li, Mechanical properties of hybrid composites reinforced by carbon and basalt fibers, International Journal of Mechanical Sciences, 148 (2018) 636–651.

    Article  Google Scholar 

  7. K. K. Rumayshah, T. Dirgantara, H. Judawisastra and S. Wicaksono, Numerical micromechanics model of carbon fiber-reinforced composite using various periodical fiber arrangement, Journal of Mechanical Science and Technology, 35(4) (2021) 1401–1406.

    Article  Google Scholar 

  8. C. Hu, Y. Bai, Z. Xu, R. Li, R. Wang and X. He, The compressive behavior of CFRP laminates with delamination of different shapes using numerical and experimental approaches, Journal of Mechanical Science and Technology, 36(9) (2022) 4443–4453.

    Article  Google Scholar 

  9. M. Demiral, F. Kadioglu and V. V. Silberschmidt, Size effect in flexural behaviour of unidirectional GFRP composites, Journal of Mechanical Science and Technology, 34(12) (2020) 5053–5061.

    Article  Google Scholar 

  10. R. Kocich and L. Kunčická, Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation, Journal of Sandwich Structures and Materials, 23(8) (2021) 4252–4275.

    Article  Google Scholar 

  11. C. Hu, Y. Bai, Z. Xu, J. Qiu, R. Wang and X. He, Progressive damage behavior of composite L-stiffened structures with initial delamination defects under uniaxial compression: experimental and numerical investigations, Polymer Composites, 43(6) (2022) 3765–3781.

    Article  Google Scholar 

  12. S. Xiao, S. Wu, Z. Xu, Y. Yang, C. Hu and S. Du, A novel methodology to research the residual compressive mechanical properties of composite stiffened panel after low velocity impact based on quantification damage simulation, Polymer Composites, 43(9) (2022) 5977–5995.

    Article  Google Scholar 

  13. G. Ben-Dor, A. Dubinsky and T. Elperin, Optimization of ballistic properties of layered ceramic armor with a ductile back plate, Mechanics Based Design of Structures and Machines, 46(1) (2018) 18–22.

    Article  Google Scholar 

  14. A. Serjouei, R. Chi, Z. Zhang and I. Sridhar, Experimental validation of BLV model on bi-layer ceramic-metal armor, International Journal of Impact Engineering, 77 (2015) 30–41.

    Article  Google Scholar 

  15. B. Tepeduzu and R. Karakuzu, Ballistic performance of ceramic/composite structures, Ceramics International, 45(2) (2019) 1651–1660.

    Article  Google Scholar 

  16. G. Guo, S. Alam and L. D. Peel, An investigation of the effect of a kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles, International Journal of Impact Engineering, 157 (2021) 104000.

    Article  Google Scholar 

  17. B. Li, H. Deng, X. Gao and H. Gao, Design and bulletproof performance investigation on the ceramic/metal laminated composite, Advanced Composites Letters, 29 (2021) 1–10.

    Google Scholar 

  18. C. C. Holland, E. A. Gamble, F. W. Zok, V. S. Deshpande and R. M. McMeeking, Effect of design on the performance of steel-alumina bilayers and trilayers subject to ballistic impact, Mechanics of Materials, 91 (2015) 241–251.

    Article  Google Scholar 

  19. Z. Chang, W. Zhao, G. Zou and H. Sun, Simulation of the lightweight ceramic/aluminum alloy composite armor for optimizing component thickness ratios, Strength of Materials, 51 (2019) 11–17.

    Article  Google Scholar 

  20. L. Yang, Z. Chen, Y. Dong, F. Zi, J. Yang and L. Wu, Ballistic performance of composite armor with dual layer piecewise ceramic tiles under sequential impact of two projectiles, Mechanics of Advanced Materials and Structures, 29(1) (2022) 1–14.

    Article  Google Scholar 

  21. W. Liu, Z. Chen, T. Xu, J. Hu and J. Li, Effect of Al alloy back panel on the dynamic penetration and damage characteristics of ceramic composite armors, Materials Express, 9(7) (2019) 723–731.

    Article  Google Scholar 

  22. J. Cao, J. Lai, J. Zhou, N. Kang, L. Du and Y. Miao, Experiments and simulations of the ballistic response of ceramic composite armors, Journal of Mechanical Science and Technology, 34(7) (2020) 2783–2793.

    Article  Google Scholar 

  23. M. Gerdooei, M. J. Rezaei and H. G. Nosrati, Improving the performance of a multi-layer armored system subjected to shock loading of an underwater explosion, Mechanics of Advanced Materials and Structures, 29(3) (2022) 419–428.

    Article  Google Scholar 

  24. P. Hu, Y. Cheng, P. Zhang, J. Liu, H. Yang and J. Chen, A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile, Ceramics International, 47(16) (2021) 22497–22513.

    Article  Google Scholar 

  25. M. Grujicic, J. Snipes and S. Ramaswami, Ballistic-penetration resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced, polyurea-matrix composite armor, International Journal of Structural Integrity, 8(3) (2017) 341–372.

    Article  Google Scholar 

  26. K. Kosla, P. Kubiak, M. Tandwijt, W. Urbaniak and A. Kucharska-Jastrząbek, Fragment-resistant property optimization within ballistic inserts obtained on the basis of para-aramid materials, Materials, 15(6) (2022) 2314.

    Article  Google Scholar 

  27. F. de Oliveira Braga, P. H. L. M. Lopes, M. S. Oliveira, S. N. Monteiro and E. P. Lima Jr., Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing, Composites Part B: Engineering, 166 (2019) 48–55.

    Article  Google Scholar 

  28. A. Morka, P. Kędzierski and P. Muzolf, Optimization of the structure of a ceramic-aluminum alloy composite subjected to the impact of hard steel projectiles, Mechanics of Composite Materials, 52(3) (2016) 333–346.

    Article  Google Scholar 

  29. S. Wu, Z. Xu, C. Hu, X. Zou and X. He, Numerical simulation study of ballistic performance of Al2O3/aramid-carbon hybrid FRP laminate composite structures subject to impact loading, Ceramics International, 48(5) (2022) 6423–6435.

    Article  Google Scholar 

  30. Y. Zhang, H. Dong, K. Liang and Y. Huang, Impact simulation and ballistic analysis of B4C composite armour based on target plate tests, Ceramics International, 47(7) (2021) 10035–10049.

    Article  Google Scholar 

  31. H. J. Kim and J. H. Song, Improvement in the mechanical properties of carbon and aramid composites by fiber surface modification using polydopamine, Composites Part B: Engineering, 160 (2019) 31–36.

    Article  Google Scholar 

  32. M. R. Aydin, V. Acar, F. Cakir, Ö. Gündoğdu and H. Akbulut, Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites, Composite Structures, 291 (2022) 115595.

    Article  Google Scholar 

  33. J. Xu, L. Tang, Y. Liu, L. Zhou, J. Chen, Z. Jiang, Z. Liu and B. Yang, Hybridization effects on ballistic impact behavior of carbon/aramid fiber reinforced hybrid composite, International Journal of Impact Engineering, 181 (2023) 104750.

    Article  Google Scholar 

  34. P. Baranowski, M. Kucewicz, R. Gieleta, M. Stankiewicz, M. Konarzewski, P. Bogusz, M. Pytlik and J. Matachowski, Fracture, fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations, International Journal of Impact Engineering, 140 (2020) 103543.

    Article  Google Scholar 

  35. L. B. Tan, K. M. Tse, H. P. Lee, V. B. C. Tan and S. P. Lim, Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: Experiments and finite element simulations, International Journal of Impact Engineering, 50 (2012) 99–112.

    Article  Google Scholar 

  36. M. Han and S. Chang, Draping simulation of carbon/epoxy plain weave fabrics with non-orthogonal constitutive model and material behavior analysis of the cured structure, Composites Part A: Applied Science and Manufacturing, 110 (2018) 172–182.

    Article  Google Scholar 

  37. B. Berk, R. Karakuzu and A. K. Toksoy, An experimental and numerical investigation on ballistic performance of advanced composites, Journal of Composite Materials, 51(25) (2017) 3467–3480.

    Article  Google Scholar 

  38. Y. Zhang, K. Huang, R. Sun, F. Liao, L. Guo and L. Zhang, Effect of embedded delamination on the compression performance of carbon fiber reinforced composites, Composite Structures, 281 (2022) 115063.

    Article  Google Scholar 

  39. W. Gao, X. Liu, J. Hu and Y. T. Feng, A novel bilinear constitutive law for cohesive elements to model the fracture of pressure- dependent rocks, Rock Mechanics and Rock Engineering, 55 (2022) 521–540.

    Article  Google Scholar 

  40. X. Li, D. Ma, H. Liu, W. Tan, X. Gong, C. Zhang and Y. Li, Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact, Composite Structures, 207 (2019) 727–739.

    Article  Google Scholar 

  41. H. Özer and E. Erbayrak, The effects of curing temperature on fracture energy and cohesive parameters for the adhesive araldite 2015, Journal of Adhesion Science and Technology, 32(12) (2018) 1287–1312.

    Article  Google Scholar 

  42. Y. Xie, T. Wang, L. Wang, Y. Yang and X. Sha, Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile, Ceramics International, 48(16) (2022) 24079–24090.

    Article  Google Scholar 

  43. Z. Yuan, W. Ma, W. Xu, Y. Sun, B. Gu and X. Chen, A numerical study on stress wave propagation in quasi-isotropic stacks of dyneema® compliant composite laminates, Composite Structures, 312 (2023) 116869.

    Article  Google Scholar 

  44. X. Zhu, W. Chen, L. Liu, K. Xu, G. Luo and Z. Zhao, Experimental investigation on high-velocity impact damage and compression after impact behavior of 2D and 3D textile composites, Composite Structures, 303 (2023) 116256.

    Article  Google Scholar 

  45. N. Zhang, G. Zhou, X. Guo, S. Xuan, D. Wei, X. Wang and D. Cai, High-velocity impact damage and compression after impact behavior of carbon fiber composite laminates: Experimental study, International Journal of Impact Engineering, 181 (2023) 104749.

    Article  Google Scholar 

  46. S. A. Sadrabadi, A. Dadashi, S. Yuan, V. Giannella and R. Citarella, Experimental-numerical investigation of a steel pipe repaired with a composite sleeve, Applied Sciences, 12(15) (2022) 7536.

    Article  Google Scholar 

  47. Z. Qi, Y. Liu and W. Chen, An approach to predict the mechanical properties of CFRP based on cross-scale simulation, Composite Structures, 210 (2019) 339–347.

    Article  Google Scholar 

  48. J. P. Davim, J. C. Rubio and A. M. Abrao, A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates, Composites Science and Technology, 67(9) (2007) 1939–1945.

    Article  Google Scholar 

  49. X. W. Yuan, W. G. Li, Z. M. Xiao and Y. M. Zhang, Prediction of temperature-dependent transverse strength of carbon fiber reinforced polymer composites by a modified cohesive zone model, Composite Structures, 304 (2023) 116310.

    Article  Google Scholar 

  50. Y. Li, B. Wang and L. Zhou, Study on the effect of delamination defects on the mechanical properties of CFRP composites, Engineering Failure Analysis, 153 (2023) 107576.

    Article  Google Scholar 

  51. P. H. D. Santos, S. M. Neves, D. O. Sant’Anna, C. H. de Oliveira and H. D. Carvalho, The analytic hierarchy process supporting decision making for sustainable development: An overview of applications, Journal of Cleaner Production, 212 (2019) 119–138.

    Article  Google Scholar 

  52. N. F. Silva, M. dos Santos, C. F. S. Gomes and L. P. de Andrade, An integrated CRITIC and grey relational analysis approach for investment portfolio selection, Decision Analytics Journal, 8 (2023) 100285.

    Article  Google Scholar 

  53. M. Tavana, M. Soltanifar and F. J. Santos-Arteaga, Analytic hierarchy process and data envelopment analysis: A match made in heaven, Expert Systems with Applications, 223 (2023) 119902.

    Article  Google Scholar 

  54. Q. Sun, J. Wu, F. Chiclana, S. Wang, E. Herrera-Viedma and R. R. Yager, An approach to prevent weight manipulation by minimum adjustment and maximum entropy method in social network group decision making, Artificial Intelligence Review, 56(7) (2023) 7315–7346.

    Article  Google Scholar 

  55. A. Darko, A. P. C. Chan, E. E. Ameyaw, E. K. Owusu, E. Pärn and D. J. Edwards, Review of application of analytic hierarchy process (AHP) in construction, International Journal of Construction Management, 19(5) (2019) 436–452.

    Article  Google Scholar 

  56. R. Baidya, P. K. Dey, S. K. Ghosh and K. Petridis, Strategic maintenance technique selection using combined quality function deployment, the analytic hierarchy process and the benefit of doubt approach, The International Journal of Advanced Manufacturing Technology, 94(1–4) (2018) 31–44.

    Article  Google Scholar 

  57. T. A. V. Nguyen, D. Tuceka and N. T. Pham, Indicators for TQM 4.0 model: delphi method and analytic hierarchy process (AHP) analysis, Total Quality Management & Business Excellence, 34(2) (2023) 220–234.

    Article  Google Scholar 

  58. M. R. Mansor, S. M. Sapuan, E. S. Zainudin, A. A. Nuraini and A. Hambali, Hybrid natural and glass fibers reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design, Materials & Design, 51 (2013) 484–492.

    Article  Google Scholar 

  59. R. Yadav, Analytic hierarchy process-technique for order preference by similarity to ideal solution: a multi criteria decision-making technique to select the best dental restorative composite materials, Polymer Composites, 42(12) (2021) 6867–6877.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 12072095), Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Grant No. 6142905232205) and College Student Entrepreneurship Assistance Program of Heilongjiang Province (Grant No. 14233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonghai Xu or Xiaodong He.

Additional information

Zhonghai Xu received Ph.D. degree in Jilin University, Jilin, China, in 2008. Now he is a Professor and Ph.D. supervisor in Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology. He is mainly engaged in the research of composite structure feature sensitivity analysis, advanced composite structure design, damage failure analysis and evaluation.

Xiaodong He received Ph.D. degree in Harbin Institute of Technology, Harbin, China. Now he is a Professor, Ph.D. supervisor and Cheung Kong Scholar Distinguished Professor in Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology. He is mainly engaged in the research of lightweight structures and composites, thermal protection structures and materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xu, Z., Hu, C. et al. Numerical comprehensive optimization and evaluation on ballistic behavior of ceramic/FRP composites based on AHP model. J Mech Sci Technol 38, 2397–2410 (2024). https://doi.org/10.1007/s12206-024-0418-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0418-0

Keywords

Navigation