Skip to main content
Log in

Effect of floor and chair sit-to-stand motions on determination of optimal surgical site for anterior cruciate ligament reconstruction surgery

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

There are insufficient studies on whether the shape of motion of the knee during anterior cruciate ligament reconstruction will affect the selection of the surgical site. The present study sought to identify the optimal surgical site for anterior cruciate ligament reconstruction by analyzing the biomechanical effects on the anterior cruciate ligament of both floor sit-to-stand and chair sit-to-stand motions. Human motion analysis and computed tomography were performed on four Korean males in their 20s without orthopedic disorders, and the von-Mises stress of the graft was calculated by performing computational analysis of two motions for each surgical site through multi-flexible body dynamics analysis. As a result, it was the smallest (floor sit-to-stand: 18.9±1.16 MPa, chair sit-to-stand: 17.9±1.2 MPa) at the proximal posterior 45° area with a radius of 15 mm from the lateral epicondyle in both motions. This study suggested that the type of motion does not affect the optimal surgical site during anterior cruciate ligament reconstruction surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACL :

Anterior cruciate ligament

ACLR :

Anterior cruciate ligament reconstruction

STS :

Sit-to-stand

FSTS :

Floor sit-to-stand

CSTS :

Chair sit-to-stand

MFBD :

Mult-flexible body dynamics

FTL :

Femoral tunnel length (mm)

GBA :

Graft bending angle (°)

References

  1. M. T. Gabriel et al., Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads, Journal of Orthopaedic Research, 22(1) (2004) 85–89.

    Article  PubMed  Google Scholar 

  2. N. Singh, International epidemiology of anterior cruciate ligament injuries, Orthopedic Res Online J, 1(5) (2018) 94–96.

    Article  Google Scholar 

  3. J. C. Loh et al., Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 19(3) (2003) 297–304.

    Article  PubMed  Google Scholar 

  4. V. Jaecker et al., High non-anatomic tunnel position rates in ACL reconstruction failure using both transtibial and anteromedial tunnel drilling techniques, Archives of Orthopaedic and Trauma Surgery, 137(9) (2017) 1293–1299.

    Article  PubMed  Google Scholar 

  5. M. Yagi et al., Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction, The American Journal of Sports Medicine, 30(5) (2002) 660–666.

    Article  PubMed  Google Scholar 

  6. N.-K. Kim and J.-M. Kim, The three techniques for femoral tunnel placement in anterior cruciate ligament reconstruction: transtibial, anteromedial portal, and outside-in techniques, Arthroscopy and Orthopedic Sports Medicine, 2(2) (2015) 77–85.

    Article  Google Scholar 

  7. G. Ji et al., Better rotational control but similar outcomes with the outside-in versus the transtibial drilling technique for anterior cruciate ligament reconstruction: A systematic review of comparative trials, Archives of Orthopaedic and Trauma Surgery, 138 (2018) 1575–1581.

    Article  PubMed  Google Scholar 

  8. M. Schenkman et al., The relative importance of strength and balance in chair rise by functionally impaired older individuals, Journal of the American Geriatrics Society, 44(12) (1996) 1441–1446.

    Article  CAS  PubMed  Google Scholar 

  9. M. J. Collins et al., Pain during prolonged sitting is a common problem in persons with patellofemoral pain, Journal of Orthopaedic and Sports Physical Therapy, 46(8) (2016) 658–663.

    Article  PubMed  Google Scholar 

  10. D. Skvortsov et al., Gait analysis and knee joint kinematics before a and 6 month after of corrective valgus osteotomy at patients with medial knee arthritis, International Orthopaedics, 46(7) (2022) 1573–1582.

    Article  PubMed  Google Scholar 

  11. E. S. Grood et al., Biomechanics of the knee-extension exercise, effect of cutting the anterior cruciate ligament, JBJS, 66(5) (1984) 725–734.

    Article  CAS  Google Scholar 

  12. L. Laudani et al., Application of the sit-to-stand movement for the early assessment of functional deficits in patients who underwent anterior cruciate ligament reconstruction, American Journal of Physical Medicine and Rehabilitation, 93(3) (2014) 189–199.

    Article  PubMed  Google Scholar 

  13. M.-S. Chan and S. M. Sigward, Individuals following anterior cruciate ligament reconstruction practice underloading strategies during daily activity, Journal of Orthopaedic Research, 40(3) (2022) 565–572.

    Article  PubMed  Google Scholar 

  14. L. Labanca et al., Asymmetrical lower extremity loading early after anterior cruciate ligament reconstruction is a significant predictor of asymmetrical loading at the time of return to sport, American Journal of Physical Medicine and Rehabilitation, 95(4) (2016) 248–255.

    Article  PubMed  Google Scholar 

  15. K. Kono et al., In vivo length change of ligaments of normal knees during dynamic high flexion, BMC Musculoskeletal Disorders, 21 (2020) 1–7.

    Article  Google Scholar 

  16. K. Kono et al., In vivo kinematics and cruciate ligament forces in bicruciate-retaining total knee arthroplasty, Scientific Reports, 11(1) (2021) 5645.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. H. Rachmat et al., In-situ mechanical behavior and slackness of the anterior cruciate ligament at multiple knee flexion angles, Medical Engineering and Physics, 38(3) (2016) 209–215.

    Article  CAS  PubMed  Google Scholar 

  18. C. Wongchaisuwat, H. Hemami and H. J. Buchner, Control of sliding and rolling at natural joints, J. Biomech. Eng., 106(4) (1984) 368–375.

    Article  CAS  PubMed  Google Scholar 

  19. Z.-K. Ling, H.-Q. Guo and S. Boersma, Analytical study on the kinematic and dynamic behaviors of a knee joint, Medical Engineering and Physics, 19(1) (1997) 29–36.

    Article  CAS  PubMed  Google Scholar 

  20. T. S. Bae, B. C. Cho and D.-S. Kwak, Biomechanical effects of aspect ratio of the knee during outside-in anterior cruciate ligament reconstruction surgery, BioMed Research International, 2021 (2021) 3454475.

    Article  PubMed  PubMed Central  Google Scholar 

  21. I. Davis and B. Roy, A gait analysis data collection and reduction technique, Human Movement Science, 10(5) (1991) 575–587.

    Article  Google Scholar 

  22. H. M. Stephen and Ma. L. Hull, Checkpoints for judging tunnel and anterior cruciate ligament graft placement, The Journal of Knee Surgery, 22(2) (2009) 161–170.

    Article  Google Scholar 

  23. Y. W. Ko, The correlation of tunnel position, orientation and tunnel enlargement in outside-in single-bundle anterior cruciate ligament reconstruction, Knee Surg. Relat. Res., 27(4) (2015) 247–254.

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Bernard et al., Femoral insertion of the ACL. Radiographic quadrant method, The American Journal of Knee Surgery, 10(1) (1997) 14–21.

    CAS  PubMed  Google Scholar 

  25. M. Clatworthy, Graft diameter matters in hamstring ACL reconstruction, Orthopaedic Journal of Sports Medicine, 4 (2016) 2325967116S00082.

    Article  PubMed Central  Google Scholar 

  26. F. R. Noyes and E. S. Grood, The strength of the anterior cruciate ligament in humans and Rhesus monkeys, JBJS, 58(8) (1976) 1074–1082.

    Article  CAS  Google Scholar 

  27. K. Kang and T. S. Bae, Effect of femoral tunnel positions on graft stress in outside - in ACL reconstruction surgery during continuous knee motion: A simulation study, The International Journal of Medical Robotics and Computer Assisted Surgery, 13(4) (2017) e1817.

    Article  Google Scholar 

  28. H. Hertz, Ueber die Berührung fester elastischer Körper, Journal Fur Die Reine Und Angewandte Mathematik, 92 (1882) 156–171.

    MathSciNet  Google Scholar 

  29. E. Monaco et al., Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft, Journal of Orthopaedic Science, 15 (2010) 125–131.

    Article  CAS  PubMed  Google Scholar 

  30. J. Cheng et al., Biomechanical comparisons of current suspensory fixation devices for anterior cruciate ligament reconstruction, International Orthopaedics, 42 (2018) 1291–1296.

    Article  ADS  Google Scholar 

  31. Y. Takeda et al., Comparison of tunnel orientation between transtibial and anteromedial portal techniques for anatomic double-bundle anterior cruciate ligament reconstruction using 3-dimensional computed tomography, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 29(2) (2013) 195–204.

    Article  PubMed  Google Scholar 

  32. Y. Tashiro et al., The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction: in vivo analysis with 2 years’ follow-up, The American Journal of Sports Medicine, 45(8) (2017) 1829–1836.

    Article  PubMed  Google Scholar 

  33. T. S. Bae and B. C. Cho, Biomechanical effect of tunnel positions and pre-tension forces on implanted graft stress and strain during outside-in ACL reconstruction surgery: A simulation study, International Journal of Precision Engineering and Manufacturing, 21 (2020) 519–524.

    Article  Google Scholar 

  34. H. Zhou et al., Kinematics of lower limbs of healthy Chinese people sitting cross-legged, Prosthetics and Orthotics International, 37(5) (2013) 369–374.

    Article  PubMed  Google Scholar 

  35. A. Hemmerich et al., Hip, knee, and ankle kinematics of high range of motion activities of daily living, Journal of Orthopaedic Research, 24(4) (2006) 770–781.

    Article  CAS  PubMed  Google Scholar 

  36. C. B. Chang et al., Comparisons of femoral tunnel position and length in anterior cruciate ligament reconstruction: modified transtibial versus anteromedial portal techniques, Arthroscopy: The Journal of Arthroscopic & Related Surgery, 27(10) (2011) 1389–1394.

    Article  Google Scholar 

  37. Y. Tashiro et al., In vivo analysis of dynamic graft bending angle in anterior cruciate ligament-reconstructed knees during downward running and level walking: comparison of flexible and rigid drills for transportal technique, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 33(7) (2017) 1393–1402.

    Article  PubMed  Google Scholar 

  38. S. Hodel et al., Influence of femoral tunnel exit on the 3D graft bending angle in anterior cruciate ligament reconstruction, Journal of Experimental Orthopaedics, 8(1) (2021) 44.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Y. Song et al., A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation, Journal of Biomechanics, 37(3) (2004) 383–390.

    Article  PubMed  Google Scholar 

  40. C. Wan, Z. Hao and S. Wen, The finite element analysis of three grafts in the anterior cruciate ligament reconstruction, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 3 (2011).

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D 1A3B04033410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Soo Bae.

Additional information

Byeong Chan Cho is master candidate in the Department of Convergence Engineering, Jungwon University in Republic of Korea. His research interest is on the computational mechanics related to dynamic analysis.

Jae Woong Han is Assistant Professor in the Department of Medical Device Industry, Jungwon university in Republic of Korea. His research interests include development of instruments and equipment related to biomedical engineering, analysis of human body motion.

Tae Soo Bae is Associate Professor in the Department of Medical Device Industry, Jungwon university in Republic of Korea. His research interests include musculoskeletal dynamics on patient-specific models, optimal surgical techniques in orthopedic surgeries, P&O products in Rehabilitation Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, B.C., Han, J.W. & Bae, T.S. Effect of floor and chair sit-to-stand motions on determination of optimal surgical site for anterior cruciate ligament reconstruction surgery. J Mech Sci Technol 38, 1613–1623 (2024). https://doi.org/10.1007/s12206-024-0251-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0251-5

Keywords

Navigation