Skip to main content
Log in

Mechanical mechanism investigation on the influence of inter-particle friction in the triaxial powder pressing system

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The effect of inter-particle friction on the macroscopic and microscopic mechanical behaviors of powder particle pressing system is an important research topic to improve the density of particle assembly. However, due to the discreteness and complexity of particle system, this problem has not been fully understood. In this study, a numerical model of triaxial powder particle pressing system was established by the DEM method, and the influence of inter-particle friction on the mechanical behavior of particle assembly was comprehensively investigated from the macroscopic and microscopic perspectives. The simulation results show that the friction between particles has a significant effect on the macroscopic mechanical properties of this powder particle pressing system, such as stress-strain response, dilatancy behavior and peak strength. In addition, the evolution of microscopic parameters such as coordination number, microstructure, sliding rate and force chain of this powder particle pressing system is also markedly influenced by the friction between particles. This research work also reveals how the friction between particles affects the movement of particles and the rearrangement of the system. At the same time, it can provide basic theoretical guidance for effectively improving the density of powder metallurgy pressed blanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Liang, Q. Wu, H. Li, R. Wang and L. Wang, Static recrystallization and texture evolution of cold-rolled powder metallurgy CoCrFeNiN0.07 high-entropy alloy, Journal of Alloys and Compounds, 862 (2021) 158602.

    Article  CAS  Google Scholar 

  2. S. Kumar and V. Balasubramanian, Developing a mathematical model to evaluate wear rate of AA7075/SiC p powder metallurgy composites, Wear, 264(11–12) (2008) 1026–1034.

    Article  CAS  Google Scholar 

  3. P. Skoglund, High density PM parts by high velocity compaction, Powder Metallurgy, 44(3) (2002) 199–201.

    Google Scholar 

  4. Y. Yu, L. Zhao, X. Lin, Y. Wang and Y. Feng, Research on the powder classification and the key parameters affecting tablet qualities for direct compaction based on powder functional properties, Advanced Powder Technology, 32 (2021) 565–581.

    Article  CAS  Google Scholar 

  5. F. Meng, H. Liu, S. Hua and M. Pang, Experimental research on sliding friction of dense dry particles lubricated between parallel plates, Tribology Letters, 69(2) (2021) 33.

    Article  Google Scholar 

  6. B. Kou, Y. Cao and J. Li, Granular materials flow like complex fluids, Nature, 551(7680) (2017) 360–363.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. J. Tsai, G. H. Huang and C. E. Tsai, Signature of transition between granular solid and fluid: rate-dependent stick slips in steady shearing, Physical Review Letters, 126(12) (2021) 128001.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. A. M. Taylor-Noonan, G. A. Siemens and M. A. Cabrera, Stability of saturated granular columns: role of stress-dilatancy and capillarity, Physics of Fluids, 33(3) (2021) 033309.

    Article  ADS  CAS  Google Scholar 

  9. Y. Zhao, Q. Gong, Y. Wu, J. G. Zornberg, Z. Tian and X. Zhang, Evolution of active arching in granular materials: Insights from load, displacement, strain, and particle flow, Powder Technology, 384 (2021) 160–175.

    Article  CAS  Google Scholar 

  10. C. M. Gourlay and A. K. Dahle, Dilatant shear bands in solidifying metals, Nature, 445(7123) (2007) 70–73.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. L. Yang, D. Wang and Y. Guo, Frictional behaviors of iron based tools-casing with sand deposition, Tribology International, 123 (2018) 180–190.

    Article  CAS  Google Scholar 

  12. I. Cavarretta, M. Coop and C. O’Sullivan, The influence of particlecharacteristics on the behaviour of coarse grained soils, Géotechnique, 60(6) (2010) 413–423.

    Article  Google Scholar 

  13. E. Rezaei, K. Zeinalzadeh and B. Ghanbarian, Effects of particle shape and size distribution on hydraulic properties of grain packs: An experimental study, arXiv: 2111.01288 (2021).

  14. W. Wei, X. Liu and K. Liu, Experimental research on force transmission of dense granular assembly under shearing in taylor–couette geometry, Tribology Letters, 48(2) (2012) 229–236.

    Article  Google Scholar 

  15. F. Meng, K. Liu and T. Qin, Experimental investigations of force transmission characteristics in granular flow lubrication, Industrial Lubrication and Tribology, 70(7) (2018) 1151–1157.

    Article  Google Scholar 

  16. C. F. Higgs and E. Y. A. Wornyoh, An in situ mechanism for self-replenishing powder transfer films: experiments and modeling, Wear, 264(1–2) (2008) 131–138.

    Article  CAS  Google Scholar 

  17. K. N. Elkholy and M. M. Khonsari, Experimental investigation on the stick-slip phenomenon in granular collision lubrication, Journal of Tribology-Transactions of the ASME, 130(2) (2008) 021302.

    Article  Google Scholar 

  18. P. A. Cundall and O. Strack, A discrete numerical model for granular assemblies, Géotechnique, 30(3) (2008) 331–336.

    Article  Google Scholar 

  19. W. Wang, Y. Liu, G. Zhu and K. Liu, Using FEM–DEM coupling method to study three-body friction behavior, Wear, 318(1–2) (2014) 114–123.

    Article  CAS  Google Scholar 

  20. Y. Yamaguchi, S. Biswas, T. Hatano and L. Goehring, Failure processes of cemented granular materials, Physical Review E, 102(5) (2020) 052903.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. F. Lin, Y. Liu, X. Li and C. Bai, The numerical and experimental investigation of particle size distribution produced by an electrical discharge process, Materials, 14(2) (2021) 287.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. F. Qi, S. Richter, M. Jenny and P. Bernhard, DEM simulation of dense granular flows in a vane shear cell: kinematics and rheological laws, Powder Technology, 366 (2020) 722–735.

    Article  CAS  Google Scholar 

  23. F. Meng, H. Liu, S. Hua and M. Pang, Force chain characteristics of dense particles sheared between parallel-plate friction system, Results in Physics, 25 (2021) 104328.

    Article  Google Scholar 

  24. A. M. Fry, P. B. Umbanhowar, J. M. Ottino and R. M. Lueptow, Effect of pressure on segregation in granular shear flows, Physical Review E, 97(6) (2018) 062906.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. D. Kretz, S. Callau-Monje, M. Hitschler, A. Hien and J. Hesser, Discrete element method (DEM) simulation and validation of a screw feeder system, Powder Technology, 287 (2016) 131–138.

    Article  CAS  Google Scholar 

  26. R. A. Hosn, L. Sibille, N. Benahmed and B. Chareyre, Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction, Granular Matter, 19(1) (2017) 4.

    Article  Google Scholar 

  27. M. L. Maier, R. A. Patel, N. I. Prasianakis, S. V. Churakov, H. Nirschl and M. J. Krause, Coupling of multi-scale lattice Boltzmann -discrete element method for reactive particle fluid flows, Physical Review E, 103(3) (2021) 033306.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. R. D. Mindlin and H. Deresiewicz, Elastic spheres in contact under varying oblique forces, Journal of Applied Mechanics, 20(3) (1953) 327–344.

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Oda, J. Konishi and S. Nemat-Nasser, Experimental micromechanical evolution of strength of granular materials: effects of particle rolling, Mechanics of Materials, 1(4) (1982) 269–283.

    Article  Google Scholar 

  30. C. Thornton, Numerical simulations of deviatoric shear deformation of granular media, Géotechnique, 50(1) (2000) 43–53.

    Article  Google Scholar 

  31. F. Meng, H. Liu, S. Hua and M. Pang, Flow characteristics and mechanical mechanism analysis in a dense sheared granular system, Powder Technology, 395 (2022) 71–82.

    Article  CAS  Google Scholar 

  32. T. S. Majmudar and R. P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435 (2005) 1079–1082.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. A. S. J. Suiker and N. A. Fleck, Frictional collapse of granular assemblies, Journal of Applied Mechanics, 71(3) (2004) 350–358.

    Article  ADS  CAS  Google Scholar 

  34. S. Pucilowski and A. Tordesillas, Rattler wedging and force chain buckling: metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime, Granular Matter, 22 (1) (2020).

  35. F. Meng, M. Pang, S. Hua, H. Liu and L. Ma, Experimental study on nonlinear friction behavior of granular flow lubrication, Results in Physics, 38 (2022) 105598.

    Article  Google Scholar 

  36. G. Zhu, H. Li, Z. Wang, T. Zhang and M. Liu, Semi-resolved CFD-DEM modeling of gas-particle two-phase flow in the micro-abrasive air jet machining, Powder Technology, 381 (2021) 585–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52175397 and 51605150). This work was also partly supported by the Henan Provincial Key Teacher Training Program (2019GGJS265), the Scientific and Technological Research Projects in Henan Province (212102210432), and the Key Scientific Research Projects of Henan Universities (21A110007 and 21A130001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabo Liu.

Additional information

Huabo Liu received a doctorate in engineering mechanics from China University of Mining and Technology (Beijing). Now he works in the mechanics teaching and research section of Henan Institute of Technology. His research interests include solid mechanics and powder metallurgy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hua, S., Cheng, P. et al. Mechanical mechanism investigation on the influence of inter-particle friction in the triaxial powder pressing system. J Mech Sci Technol 38, 735–747 (2024). https://doi.org/10.1007/s12206-024-0123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0123-z

Keywords

Navigation