Skip to main content
Log in

Effect of laser direct metal deposition process on the microstructure and mechanical properties and temperature and stress fields of 24CrNiMo

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We conducted a study to investigate the impact of the laser direct metal deposition (LMD) process on the microstructure, mechanical properties, temperature fields, and stress fields of 24CrNiMo steel in order to determine the optimal process parameters. The optimal parameters were determined to be a laser power of 1400 W, scanning speed of 7 mm/s, and powder feed rate of 8 g/min. When these optimal parameters were used, the formed specimens exhibited a high densely of up to 97.5 %. The microstructure of the specimens formed different parameters primarily consisted of bainite, martensite and ferrite. The specimens formed under various process conditions demonstrated good toughness, with a maximum tensile strength of 1131±20 MPa and an elongation of 16±1.8 %. Additionally, there was little difference in wear resistance and wear morphology among the specimens formed under different processes. The predominant wear mechanisms include abrasive wear, adhesive wearand oxidative wear. Increasing laser power and decreasing scanning speed resulted in a gradual increase in the temperature gradient gradually, leading to higher residual stresses in the formed specimens. Longitudinal stresses concentrated on both sides of the deposited layer, while the transverse stresses concentrated on one side of the deposited layer. The simulation results of the temperature field and stress field were consistent with the experimental results, with errors within the range of 10 %–20 %. This study demonstrated that the simulated models of temperature and stress fields effectively captured the fundamental phenomena in the LMD process, providing valuable tools for predicting and optimizing temperature distribution and stress in the LMD process. These findings contribute to the understanding and enhancement of the LMD process for 24CrNiMo steel, making it applicable for various applications requiring superior microstructure and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Cui, S. Zhang, Z. Y. Wang, C. H. Zhang, C. L. Ni and C. L. Wu, Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting, Materials Science and Engineering A, 845 (2022) 143215.

    Article  Google Scholar 

  2. F. Z. Wang, C. H. Zhang, X. Cui, F. Q. Zhou, S. Zhang, H. T. Chen and J. Chen, Effect of energy density on the defects, microstructure, and mechanical properties of selective-laser-melted 24CrNiMo low-alloy steel, Journal of Materials Engineering and Performance, 31 (2022) 3520–3534.

    Article  Google Scholar 

  3. X. L. Kang, S. Y. Dong, H. B. Wang, S. X. Yan, X. T. Liu and B. S. Xu, Effects of Y content on laser melting-deposited 24CrNiMo steel: formability, microstructural evolution, and mechanical properties, Materials and Design, 188 (2020) 108434.

    Article  Google Scholar 

  4. C. F. Shi, S. Y. Chen, Q. Xia and Z. Li, Preparation and printability of 24CrNiMo alloy steel powder for selective laser melting fabricating brake disc, Powder Metallurgy, 61(1) (2018) 73–80.

    Article  Google Scholar 

  5. X. Cui, S. Zhang, C. Wang, C. H. Zhang, J. Chen and J. B. Zhang, Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel. Materials Science and Engineering A, 791 (2020) 139738.

    Article  Google Scholar 

  6. C. Wang, S. Zhang, C. H. Zhang, C. L. Wu, J. B. Zhang and A. O. Abdullah, Phase evolution and wear resistance of in situ synthesized V8C7 particles reinforced Fe-based coating by laser cladding, Optics and Laser Technology, 105 (2018) 58–65.

    Article  Google Scholar 

  7. Y. H. Cai, J. Xiong, H. Chen and G. J. Zhang, A review of in-situ monitoring and process control system in metal-based laser additive manufacturing, Journal of Manufacturing Systems, 70 (2023) 309–326.

    Article  Google Scholar 

  8. N. Shamsaei, A. Yadollahi and L. Bian, An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8 (2015) 12–35.

    Article  Google Scholar 

  9. S. Gnaase, D. Niggemeyer, D. Lehnert, C. Bödger and T. Tröster, Comparative study of the influence of heat treatment and additive manufacturing process (LMD & L-PBF) on the mechanical properties of specimens manufactured from 1.2709, Crystals, 13(2) (2023) 157.

    Article  Google Scholar 

  10. A. Guzanová, G. Ižaríková, J. Brezinová, J. Živčák, D. Draganovská and R. Hudák, Influence of build orientation, heat treatment, and laser power on the hardness of Ti6Al4V manufactured using the DMLS process, Metals, 7(8) (2017) 318.

    Article  Google Scholar 

  11. K. Karolewska, B. Ligaj and D. Boroński, Strain analysis of Ti6Al4V titanium alloy samples using digital image correlation, Materials, 13(15) (2020) 3398.

    Article  Google Scholar 

  12. E. Govekar, A. Jeromen and A. Kuznetsov, Annular laser beam based direct metal deposition, Procedia CIRP, 74 (2018) 222–227.

    Article  Google Scholar 

  13. J. Mazumder and J. Koch, Rapid prototyping by plaser cladding, Proc Spie, 23(8) (1993) 556.

    Google Scholar 

  14. K. Geenen, A. Röttger and M. Windmann, Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material, Materials Science and Engineering A, 678 (2016) 365–376.

    Article  Google Scholar 

  15. Y. Liu, J. Yang, H. Yang, K. Li, Y. Qiu, W. Zhang and Z. Shengfeng, Cu-bearing 316L stainless steel coatings produced by laser melting deposition: microstructure and corrosion behavior in simulated body fluids, Surface and Coatings Technology, 428 (2021) 127868.

    Article  Google Scholar 

  16. R. M. Mahamood and E. T. Akinlabi, Laser metal deposition of functionally graded Ti6Al4V/TiC, Materials and Design, 84 (2015) 402–410.

    Article  Google Scholar 

  17. Y. Liu, C. Liang and W. Liu, Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure, Journal of Alloys and Compounds, 763(30) (2018) 376–383.

    Article  Google Scholar 

  18. R. Koike, I. Unotoro and Y. Kakinuma, Evaluation for mechanical characteristics of Inconel625-SUS316L joint produced with direct energy deposition, Procedia Manufacturing, 14 (2017) 105–110.

    Article  Google Scholar 

  19. C. Zhong, A. Gasser and J. Kittel, Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition, Journal of Laser Applications, 28(2) (2016) 022010.

    Article  Google Scholar 

  20. L. Zhu, K. Geng, J. Wang, D. Sun, M. Shan, Y. Lu, X. Zhang, Y. Cai, J. Han and Z. Jiang, Strain hardening and strengthening mechanism of laser melting deposition (LMD) additively manufactured FeCoCrNiAl0.5 high-entropy alloy, Materials Characterization, 194 (2022) 112365.

    Article  Google Scholar 

  21. Z. Liang, Y. Zhang, Y. Liu, Z. Zhu and H. Zhang, Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy formed by laser melting deposition (LMD), Materials Letters, 317 (2022) 132092.

    Article  Google Scholar 

  22. Y. Cai, L. Zhu, Y. Cui and J. Han, Manufacturing of FeCoCrNi + FeCoCrNiAl laminated high-entropy alloy by laser melting deposition (LMD), Materials Letters, 289 (2021) 129445.

    Article  Google Scholar 

  23. D. M. Keicher, J. E. Smugeresky and J. A. Romero, Using the laser engineered net shaping (LENS) process to produce complex components from a CAD solid model, Proceedings of SPIE, 2993 (1997) 91–97.

    Article  Google Scholar 

  24. W. Hofmeister, M. Wert and J. Smugeresky, Investing solidification with laser-engineered net shaping process, JOM-e, 51 (7) (1999).

  25. M. L. Griffith, D. M. Keicher and C. L. Atwood, Using the laser engineering net shaping (LEN) process to produce complex components from a CAD solid model, SPIE Proceedings, 2993 (1996) 91–97.

    Google Scholar 

  26. M. L. Griffith, D. M. Keicher, C. L. Atwood, J. A. Romero, J. E. Smugeresky, L. D. harwell and D. L. Greene, Free form fabrication of metallic components using laser engineering net shaping (Lens), 1996 International Solid Freeform Fabrication Symposium, Austin, USA (1996).

  27. S. Liu, K.-M. Hong, C. Katinas and Y. C. Shin, Multiphysics modeling of phase transformation and microhardness evolution in laser direct deposited Ti6Al4V, Journal of Manufacturing Processes, 45(C) (2019) 579–587.

    Article  Google Scholar 

  28. Z. Liu and H. Qi, Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy, Acta Materialia, 87 (2015) 248–258.

    Article  Google Scholar 

  29. Z. Yang, J. Han, W. Li, Z. Li, L. Pan and X. Shi, Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs, Engineering Failure Analysis, 34 (2013) 121–128.

    Article  Google Scholar 

  30. P. Dufrénoy, G. Bodovillé and G. Degallaix, Damage mechanisms and thermomechanical loading of brake discs, European Structural Integrity Society, 29 (2002) 167–176.

    Article  Google Scholar 

  31. P. Dufrénoy and D. Weichert, A thermomechanical model for the analysis of disc brake fracture mechanisms, Journal of Thermal Stresses, 26(8) (2011) 815–828.

    Article  Google Scholar 

  32. E. V. Puymbroeck, W. Nagy, K. Schotte, Z. Ul-Abdin and H. D. Backer, Determination of residual welding stresses in a steel bridge component by finite element modeling of the incremental hole-drilling method, Applied Sciences, 9(3) (2019) 536.

    Article  Google Scholar 

  33. N. van den Berg, H. Xin and M. Veljkovic, Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deck, Materials and Design, 198 (2021) 109294.

    Article  Google Scholar 

  34. W. Jiang, X. Xie, T. Wang, X. Zhang, S.-T. Tu, J.-G. Wang and X. Zhao, Fatigue life prediction of 316L stainless steel weld joint including the role of residual stress and its evolution: experimental and modeling, International Journal of Fatigue, 143 (2021) 105997.

    Article  Google Scholar 

  35. H. Samrout and R. El Abdi, Fatigue behaviour of 28CrMoV5-08 steel under thermomechanical loading, International Journal of Fatigue, 20(8) (1998) 555–563.

    Article  Google Scholar 

  36. M. Renderos, F. Girot, A. Lamikiz, A. Torregaray and N. Saintier, Ni based powder reconditioning and reuse for LMD process, Physics Procedia, 83 (2016) 769–777.

    Article  Google Scholar 

  37. L. Arregui, I. Garmendia, J. Pujana and C. Soriano, Study of the geometrical limitations associated to the metallic part manufacturing by the LMD process, Procedia CIRP, 68 (2018) 363–368.

    Article  Google Scholar 

  38. M. Pellizzari, Z. Zhao, P. Bosetti and M. Perini, Optimizing direct laser metal deposition of H13 cladding on CuBe alloy substrate, Surface and Coatings Technology, 432 (2022) 128084.

    Article  Google Scholar 

  39. L. Wang, G. Zhu, T. Shi, J. Wu, B. Lu, G. Fu and Y. Ye, Laser direct metal deposition process of thin-walled parts using variable spot by inside-beam powder feeding, Rapid Prototyping Journal, 24(1) (2018) 18–27.

    Article  Google Scholar 

  40. X. Zhang, W. Li, W. Cui and F. Liou, Modeling of worn surface geometry for engine blade repair using laser-aided direct metal deposition process, Manufacturing Letters, 15(Part A) (2018) 1–4.

    Article  Google Scholar 

  41. D. Boisselier, S. Sankaré and T. Engel, Improvement of the laser direct metal deposition process in 5-axis configuration, Physics Procedia, 56 (2014) 239–249.

    Article  Google Scholar 

  42. D. Y. Zhang, Z. Feng, C. J. Wang, Z. Liu, D. D. Dong, Y. Zhou and R. Wu, Modeling of temperature field evolution during multilayered direct laser metal deposition, Journal of Thermal Spray Technology, 26(5) (2017) 831–845.

    Article  Google Scholar 

  43. T. Yu, L. Chen, Z. Liu and P. Xu, Research on the temperature control strategy of thin-wall parts fabricated by laser direct metal deposition, The International Journal of Advanced Manufacturing Technology, 122(2) (2022) 669–684.

    Article  Google Scholar 

  44. W. Zhang and S. Q. Shi, Simulation of temperature field of metal thin wall parts during laser direct deposition rapid prototyping, Applied Mechanics and Materials, 1439(88–89) (2011) 42–45.

    Google Scholar 

  45. L. Cao, S. Y. Chen, M. W. Wei, Q. L. J. Guo, C. S. Liu and M. Wang, Study of surface topography detection and analysis methods of direct laser deposition 24CrNiMo alloy steel, Optics and Laser Technology, 135 (2021) 106661.

    Article  Google Scholar 

  46. X. L. Rang, S. Y. Dong, H. B. Wang, S. S. Yan, X. T. Liu and B. S. Xu, Inhomogeneous microstructure and its evolution of laser melting deposited 24CrNiMo steel: from single-track to bulk sample, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 772 (2020) 138795.

    Article  Google Scholar 

  47. X. Cui, S. Zhang, C. H. Zhang, J. Chen, J. B. Zhang and S. Y. Dong, A comparison on microstructure features of 24CrNiMo low alloy steel prepared by selective laser melting and laser melting deposition, Vacuum, 191 (2021) 110394.

    Article  Google Scholar 

  48. ASTM B311-17, Standard Test Method for Density of Powder Metallurgy (PM) Materials Containing Less Than Two Percent Porosity, ASTM International, USA (2017).

    Google Scholar 

  49. M. S. Adin, Investigation of microstructural and mechanical properties of dissimilar metal weld between AISI 420 and AISI 1018 steels, Arabian Journal for Science and Engineering, 47(7) (2022) 8341–8350.

    Article  Google Scholar 

  50. M. S. Adin, A parametric study on the mechanical properties of MIG and TIG welded dissimilar steel joints, J. Adhes. Sci. Technol. (2023).

  51. M. S. Adin and E. Kılıçkap, Strength of double-reinforced adhesive joints, Mater. Test, 63 (2021) 176–181.

    Article  Google Scholar 

  52. X. Luo, X. Chen, T. Wang and Z. Wang, Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Materials Science and Engineering A, 710 (2018) 192–199.

    Article  Google Scholar 

  53. X. Kang, S. Dong, P. Men and B. Xu, Microstructure evolution and gradient performance of 24CrNiMo steel prepared via laser melting deposition, Materials Science and Engineering A, 777 (2020) 139004.

    Article  Google Scholar 

  54. K. Garbala and A. Patejuk, Tribological properties of the Fe−Al intermetallic alloys after annealing, Archives of Foundry Engineering, 11(S I2) (2011) 43–46.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Research Program supported by the Department of Education and Technology (National Key Research and Development Program), China.

This work was supported by the China Postdoctoral Science Foundation (2023T160412, 2022M712029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Chen or Dengwen Hu.

Additional information

Yongsheng Zhao is the first author of this paper, a Ph.D. candidate at Southwest Jiaotong University, focusing on the field of laser additive manufacturing.

Hui Chen is a Professor and Ph.D. supervisor in the School of Materials Science and Engineering at Southwest Jiaotong University, China. He is a Changjiang Scholar and focuses on laser welding and laser additive manufacturing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, H., Hu, D. et al. Effect of laser direct metal deposition process on the microstructure and mechanical properties and temperature and stress fields of 24CrNiMo. J Mech Sci Technol 38, 207–220 (2024). https://doi.org/10.1007/s12206-023-1218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-1218-7

Keywords

Navigation