Skip to main content
Log in

Microstructural, mechanical, and tribological properties of a novel hybrid LLDPE/PTFE/x wt.% GNPs for bearing surface applications

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This study presents a novel nanocomposite of LLDPE/15 wt.% PTFE/1 wt.% GNPs by using a hot compression molding technique to increase its compatibility with harsh operations in bearing surface applications. From an industrial perspective, various problems occur in bearing surface applications during running, particularly an overheating problem. Therefore, the major objective of this study is to synthesize LLDPE by mixing a dual matrix of LLDPE/x wt.% PTFE with different weight fractions of PTFE (from 0 wt.% up to 20 wt.%) and then incorporating the optimum case of a dual matrix with different weight fractions of GNPs (from 0 wt.% up to 1.5 wt.%) to improve mechanical and tribological properties. SEM was used to describe microstructural observations of the prepared nanocomposites. Compression and microhardness tests were performed to investigate the mechanical properties. Dry sliding wear and COF tests were implemented by pin-on-disc with a load cell to examine the tribological characteristics. Microstructural observations of LLDPE/15 wt.% PTFE elucidate good mixing compared to pure LLDPE samples. In addition, observations of morphological properties show ideal mixing and adhesion between LLDPE/15 wt.% PTFE and 1 wt.% GNPs, which eliminate defects and cause a strengthening mechanism between matrix and reinforcement. Elastic modulus and microhardness of LLDPE/15 wt.% PTFE were improved by 73.77 % and 41.39 %, respectively, compared to pure LLDPE samples. Moreover, the wear rate and COF of LLDPE/15 wt.% PTFE composites were enhanced by 72.41 and 7.04 %, respectively, compared to pure LLDPE. Moreover, after adding 1 wt.% of GNPs to LLDPE/15 wt.% PTFE, elastic modulus, microhardness, wear rate, and COF were improved by 16.15 %, 27.47 %, 29.73 %, and 45.24 %, respectively, compared to the unfilled dual matrix of LLDPE/15 wt.% PTFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Park and P. R. Bandaru, Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages, Polymer, 51 (22) (2010) 5071–5077.

    Article  Google Scholar 

  2. C. Pramanik, D. Nepal, M. Nathanson, J. Gissinger, A. Garley, R. Berry, A. Davijani, S. Kumar and H. Heinz, Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance, Composites Science and Technology, 166 (2018) 86–94.

    Article  Google Scholar 

  3. H. I. Elkhouly, E. M. Ali, M. Sheikh and A. El-Sayed M. Hassan, An investigated organic and inorganic reinforcement as an effective economical filler of poly (methyl methacrylate) nanocomposites, Scientific Reports, 12 (1) (2022) 16416.

    Article  Google Scholar 

  4. O. Bafakeeh, M. Shiba, A. Elshalakany, M. Abu-Okail and A. Hussien, Effect of dispersion hybrid structural properties of MWCNTs and Al2O3 on microstructural and thermal characteristics of PCMs for thermal energy storage in solar water desalination, J. Therm. Anal. Calorim., 148 (10) (2023) 4087–4104.

    Article  Google Scholar 

  5. W. Abd-Elaziem, S. Elkatatny, A. Abd-Elaziem, M. Khedr, M. Abd El-baky, M. Hassan, M. Abu-Okail, M. Mohammed, A. Järvenpää, T. Allam and A. Hamada, On the current research progress of metallic materials fabricated by laser powder bed fusion process: a review, J. Mater. Res. Technol., 20 (2022) 681–707.

    Article  Google Scholar 

  6. O. Bafakeeh, W. Shewakh, A. Abu-Oqail, W. Abd-Elaziem, M. Abdel Ghafaar and M. Abu-Okail, Synthesis and characterization of hybrid fiber-reinforced polymer by adding ceramic nanoparticles for aeronautical structural applications, Polymers, 13 (23) (2021) 4116.

    Article  Google Scholar 

  7. M. Abu-Okail, A. N. Alsaleh, W. M. Farouk, A. Elsheikh, A. Abu-Oqail, A. Y. Abdelraouf and M. Abdel Ghafaar, Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite, J. Mater. Res. Technol., 14 (2021) 2624–2637.

    Article  Google Scholar 

  8. M. Abu-Okail, M. Nafea, M. Ghanem, M. El-Sheikh and A. El-Nikhaily, Damage mechanism evaluation of polymer matrix composite reinforced with glass fiber via modified arcan test specimens, J. Fail. Anal. Prev., 21 (2021) 451–461.

    Article  Google Scholar 

  9. M. H. Ata, M. Abu-Okail, G. M. Essa, T. S. Mahmoud and I. Hassab-Allah, Failure mode and failure load of adhesively bonded composite joints made by glass fiber-reinforced polymer, J. Fail. Anal. Prev., 19 (4) (2019) 950–957.

    Article  Google Scholar 

  10. S. K. Hong, D. Kim, S. Lee, B. W. Kim, P. Theilmann and S. H. Park, Enhanced thermal and mechanical properties of carbon nanotube composites through the use of functionalized CNT-reactive polymer linkages and three-roll milling, Compos. Part A Appl. Sci. Manuf., 77 (2015) 142–146.

    Article  Google Scholar 

  11. I. Charitos, A. Drougkas and E. Kontou, Prediction of the elastic modulus of LLDPE/CNT nanocomposites by analytical modeling and finite element analysis, Mater. Today Commun., 24 (2020) 101070.

    Article  Google Scholar 

  12. A. Ritonga, N. Jamarun, S. Arief, H. Aziz, D. Tanjung, B. Isfa, V. Sisca and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol., 17 (2022) 2326–2332.

    Article  Google Scholar 

  13. J. Suh and D. Bae, Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing, Compos. B. Eng., 95 (2016) 317–323.

    Article  Google Scholar 

  14. M. Satapathy, P. Varshney, D. Nanda, S. Mohapatra, A. Behera and A. Kumar, Fabrication of durable porous and nonporous superhydrophobic LLDPE/SiO2 nanoparticles coatings with excellent self-cleaning property, Surf. Coat. Technol., 341 (2018) 31–39.

    Article  Google Scholar 

  15. S. Shi, L. Wang, Y. Pan, C. Liu, X. Liu, Y. Li, J. Zhang, G. Zheng and Z. Guo, Remarkably strengthened microinjection molded linear low-density polyethylene (LLDPE) via multi-walled carbon nanotubes derived nanohybrid shish-kebab structure, Compos. B. Eng., 167 (2019) 362–369.

    Article  Google Scholar 

  16. P. Jaiswal, B. Pushkar, K. Maikap and P. Mahanwar, Abiotic aging assisted bio-oxidation and degradation of LLDPE/LDPE packaging polyethylene film by stimulated enrichment culture, Polym. Degrad. Stab., 206 (2022) 110156.

    Article  Google Scholar 

  17. H. Zhang, T. Liu, B. Li, H. Li, Z. Cao, G. Jin, L. Zhao and Z. Xin, Evaluating melt foamability of LLDPE/LDPE blends with high LLDPE content by bubble coalescence mechanism, Polymer, 213 (2021) 123209.

    Article  Google Scholar 

  18. P. Khanam, A. Maadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, A. Hamilton and D. Sun, Melt processing and properties of linear low density polyethylenegraphene nanoplatelet composites, Vacuum, 130 (2016) 63–71.

    Article  Google Scholar 

  19. L. Zhang, T. Xie, K. Chen, C. Li, H. Wen, Y. Sgi and J. Zhang, Quantitative characterization of the transfer film morphology of SiO2/PTFE composite, Wear, 484 (2021) 204047.

    Article  Google Scholar 

  20. J. Choi, K. Song, J. Kim, W. Im and C. Ahn, Enhanced thermal and electrical properties of hybrid polymer composites containing Al2O3 microspheres and nanowires, Ceramics International, 48 (21) (2022) 32081–32088.

    Article  Google Scholar 

  21. M. Naffakh, A. M. D. Pascual, C. Marco, G. Ellis and M. Fatou, Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites, Prog. Polym. Sci., 38 (8) (2013) 1163–1231.

    Article  Google Scholar 

  22. C. Bo, Z. Yubin, W. Yancheng, C. Jianan, G. Xiaoxiao, L. Shumei, Z. Jianqing and Z. Mingqiu, Simultaneous improvement of processability and toughness of highly filled MH/LLDPE composites by using fluorine-containing flow modifiers, Compos. Part A Appl. Sci. Manuf., 134 (2020) 105900.

    Article  Google Scholar 

  23. G. Tian, J. Liu, T. Sun, X. Wang, H. Hu and D. Wang, The effects of carbon materials with different dimensionalities on the flow instabilities of LLDPE (linear low density polyethylene), Polymer, 142 (2018) 144–154.

    Article  Google Scholar 

  24. S. Pu, Y.-B. Hao, X.-X. Dai, P.-P. Zhang, J.-B. Zeng and M. Wang, Morphological, rheological, crystalline and mechanical properties of ethylene-vinyl acetate copolymer/linear low-density polyethylene/amphiphilic graphene oxide nanocomposites, Polymer Testing, 63 (2017) 289–297.

    Article  Google Scholar 

  25. D. Sajjad, G. Faramarz, G. Ismail and A. Mohsen, Predicting of mechanical properties of PP/LLDPE/TiO2 nano-composites by response surface methodology, Compos. B. Eng., 84 (2016) 109–120.

    Article  Google Scholar 

  26. H. Wu, L. Zhu, W. Yue, Z. Fu and J. Kang, Wear-resistant and hydrophobic characteristics of PTFE/CF composite coatings, Prog. Org. Coat., 128 (2019) 90–98.

    Article  Google Scholar 

  27. E. Yang, Effect of crystalline and amorphous phases on the transfer of polytetrafluoroethylene (PTFE) onto metallic substrates, J. Mater. Res. Technol., 7 (11) (1992) 3139–3149.

    Article  Google Scholar 

  28. S. Mcelwain, T. Blanchet and L. Schadler, Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites, Tribol. Trans., 51 (3) (2008) 247–253.

    Article  Google Scholar 

  29. P. Ye, J. Wu, L. Mu, D. He, X. Feng and X. Lu, Tribological behaviors of carbon series additions reinforced CF/PTFE composites at high speed, J. Appl. Polym. Sci., 133 (20) (2016) 1–9.

    Article  Google Scholar 

  30. X. Li, Y. Ling, G. Zhang, Y. Yin, Y. Dai, C. Zhang and J. Luo, Preparation and tribological properties of solid-liquid synergetic self-lubricating PTFE/SiO2/PAO6 composites, Compos. B. Eng., 196 (2020) 108133.

    Article  Google Scholar 

  31. C. Pan, K. Kou and Y. Zhang, Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles, Compos. B. Eng., 153 (2018) 1–8.

    Article  Google Scholar 

  32. Y. Qi, Q. Luo and J. Shen, Surface modification of BMN particles with silane coupling agent for composites with PTFE, Appl. Surf. Sci., 414 (2017) 147–152.

    Article  Google Scholar 

  33. F. Luo, B. Tang, Y. Yuan, Z. Fang and S. Zhang, Microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 filled PTFE, an environmental friendly composites, Appl. Surf. Sci., 436 (2018) 900–906.

    Article  Google Scholar 

  34. A. El-Sayed M. Hassan, M. EL-Sheikh, W. Y. Ali and M. N. M. Rohim, Mechanical and tribological performance of self-cured poly methyl methacrylate reinforced by alumina nanowires and zirconia nanoparticles for denture applications, Mater. Plast., 58 (3) (2021) 109–120.

    Article  Google Scholar 

  35. M. N. M. Rohim, M. El-Sheikh, W. Y. Ali and A. El-Sayed M. Hassan, Effect of Al2O3 nanowires and ZrO2 nanoparticles addition on the mechanical and tribological properties of heat-cured PMMA acrylic denture base material, Design Engineering, 7 (2021) 12171–12181.

    Google Scholar 

  36. R. Zhang, J. Zhao and J. Liang, A novel multifunctional PTFE/PEO composite coating prepared by one-step method, Surf. Coat. Technol., 299 (2016) 90–95.

    Article  Google Scholar 

  37. D. Choudhury, I. Niyonshuti, J. Chen, J. Goss and M. Zou, Tribological performance of polydopamine + Ag nanoparticles/PTFE thin films, Tribol Int., 144 (2020) 106097.

    Article  Google Scholar 

  38. V. Aderikha, A. Krasnov, A. Naumkin and V. Shapovalov, Effects of ultrasound treatment of expanded graphite (EG) on the sliding friction, wear resistance, and related properties of PTFE-based composites containing EG, Wear, 386 (2017) 63–71.

    Article  Google Scholar 

  39. B. Feng, X. Fang, Y. Li, S. Wu, Y. Mao and H. Wang, Reactions of Al-PTFE under impact and quasi-static compression, Adv. Mater. Sci. Eng., 2015 (2015) 582320.

    Article  Google Scholar 

  40. L. Zhang, T. Xie, K. Chen, C. Li, H. Wen, Y. Shi and J. Zhang, Quantitative characterization of the transfer film morphology of SiO2/PTFE composite, Wear, 484 (2021) 204047.

    Article  Google Scholar 

  41. X. Tan, Q. Yuan, Q. Mengting, Y. Jinhong, J. Nan, T. Cheng and D. Wen, Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review, J. Mater. Sci. Technol., 117 (2022) 238–250.

    Article  Google Scholar 

  42. W. Dai, L. Lv, T. Ma, X. Wang, J. Ying, Q. Yan, X. Tan, J. Gao, C. Xue, J. Yu and Y. Yao, Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management, Adv. Sci., 8 (7) (2021) 2003734.

    Article  Google Scholar 

  43. M. H. Moosa, M. Abu-Okail, A. Abu-Oqail, S. A. Al-Shelkamy, W. M. Shewakh and M. A. Ghafaar, Structural and tribological characterization of carbon and glass fabrics reinforced epoxy for bushing applications safety, Polymers, 15 (9) (2023) 2064.

    Article  Google Scholar 

  44. A. Kausar, W. Ullah, B. Muhammad and M. Siddiq, Influence of processing technique on the physical properties of modified polystyrene/exfoliated graphite nanocomposites, Mater. Manuf. Process., 30 (3) (2015) 346–355.

    Article  Google Scholar 

  45. H. Kesong, D. Dhaval, I. Kulkarni, V. Vladimir and K. Tsukru, Graphene polymer nanocomposites for structural and functional applications, Prog. Polym. Sci., 39 (11) (2014) 1934–1972.

    Article  Google Scholar 

  46. J. Du and H. Cheng, The fabrication, properties and uses of graphene/polymer composites, Macromol. Chem. Phys., 213 (10–11) (2012) 1060–1077.

    Article  Google Scholar 

  47. Y. Sun and G. Shi, Graphene/polymer composites for energy applications, J. Polym. Sci. B: Polym. Phys., 51 (4) (2013) 231–253.

    Article  Google Scholar 

  48. J. Suh and D. Bae, Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing, Compos. B. Eng., 95 (2016) 317–323.

    Article  Google Scholar 

  49. J. Jing, Y. Chen, S. Shi, L. Yang and P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods, Chem. Eng. J., 402 (2020) 126218.

    Article  Google Scholar 

  50. R. Silva-Leyton, R. Quijada, R. Bastías, N. Zamora, F. Olate-Moya and H. Palza, Polyethylene/graphene oxide composites toward multifunctional active packaging films, Compos. Sci. Technol., 184 (2019) 107888.

    Article  Google Scholar 

  51. C. S. Kim, K. S. Hong and M. K. Kim, Nonlinear robust control of a hydraulic elevator, Control Engineering Practice, 13 (6) (2005) 789–803.

    Article  Google Scholar 

  52. A. El-Sayed M. Hassan, A. I. Eid, M. El-Sheikh and W. Y. Ali, Effect of graphene nanoplatelets and paraffin oil addition on the mechanical and tribological properties of low-density polyethylene nanocomposites, Arab J. Sci. Eng., 43 (2018) 1435–1443.

    Article  Google Scholar 

  53. A. E. M. Hassan, A. I. EiD, M. El-Sheikh and W. Y. Ali, Mechanical and tribological performance of polyamide12 reinforced with graphene nanoplatelets and paraffin oil nanocomposites, Mater. Werkst., 50 (1) (2019) 74–85.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. S. Mashal, a specialist in revising scientific research, for his considerable efforts in editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. I. Abu-Oqail.

Additional information

A. El-Sayed M. Hassan is a lecturer in the Faculty of Technology and Education, Mechanical Production Technology. He received his Ph.D. in Mechanical Technology from Beni-suef University, Egypt. His research interests include nanocomposites, and modern manufacturing technology.

Ahmed M. I. Abuoqail is an Assistant Professor in the Faculty of Technology and Education, Mechanical production technology. He received his Ph.D. in Mechanical Technology from Beni-suef University, Egypt. His research interests include nanocomposites, and modern manufacturing.

Mohamed Abu-Okail, a Ph.D. in materials engineering, currently is a lecturer in Modern Academy for Engineering and Technology, Egypt, Manufacturing Engineering and Production Technology Department.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.ES.M., Abu-Oqail, A.M.I. & Abu-Okail, M. Microstructural, mechanical, and tribological properties of a novel hybrid LLDPE/PTFE/x wt.% GNPs for bearing surface applications. J Mech Sci Technol 38, 163–175 (2024). https://doi.org/10.1007/s12206-023-1214-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-1214-y

Keywords

Navigation