Skip to main content
Log in

Nonlinear vibration characteristics of accelerating viscoelastic membrane

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Considering the viscoelastic characteristics of the accelerating viscoelastic membrane in roll-to-roll manufacturing, the nonlinear vibration characteristics of the accelerating viscoelastic membrane were investigated. The mechanical model of the accelerating viscoelastic membrane was established. Considering geometric nonlinearity, the equation of nonlinear vibration of the accelerating viscoelastic membrane was deduced. The ordinary differential equation of moving membranes was obtained using the Bubnov-Galerkin method and solved using the method of multiple scales. Numerical analyses reveal the effects of constant average speed, the speed fluctuation amplitude, the elastic modulus, the viscosity coefficient, and other parameters on the amplitude of vibration and the amplitude-frequency characteristics of moving membranes. Results provide theoretical guidance for the reasonable selection of printing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Q. Tong, B. Z. Liu and J. L. Zhang, Study on the deforming properties of the PET film, Packaging Engineering, 4(1) (1997) 26–28.

    Google Scholar 

  2. L. W. Zhang, X. Ding and X. D. Yang, General Kelvin-Voigt creep model of fabric architectural membrane, Journal of Tianjin Polytechnic University, 30(4) (2011) 19–22.

    Google Scholar 

  3. K. Marynowski and T. Kapitaniak, Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web, International Journal of Non-Linear Mechanics, 37(7) (2002) 1147–1161.

    Article  MATH  Google Scholar 

  4. M. T. A. Robinson, Analysis of the vibration of axially moving viscoelastic plate with free edges using differential quadrature method, Journal of Vibration and Control, 24(17) (2018) 3908–3919.

    Article  MathSciNet  Google Scholar 

  5. M. T. A. Robinson and S. Adali, Effects of the thickness on the stability of axially moving viscoelastic rectangular plates, Applied Acoustics, 140(5) (2018) 315–326.

    Article  Google Scholar 

  6. R. Jafar, V. Mahsa and H. M. Hossein, A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement, Mechanics Research Communications, 110 (2020) 103618.

    Article  Google Scholar 

  7. X. F. Kong, Vibration analysis and simulation of axially moving viscoelastic beams based on Galerkin method, M.A. Thesis, Shandong University of Science and Technology, China (2019).

    Google Scholar 

  8. M. J. Liao and Y. H. Li, Analytical solution of the free vibration of viscoelastic sandwich circular plate, Journal of Dynamics and Control, 11(4) (2013) 336–342.

    Google Scholar 

  9. Y. Q. Yang, Z. M. Wang and Y. Wang, Dynamic stability of rotating viscoelastic annular sector plate, Journal of Low Frequency Noise, Vibration and Active Control, 40(1) (2021) 217–238.

    Article  Google Scholar 

  10. S. H. Alavi and H. Eipakchi, An analytical approach for free vibrations analysis of viscoelastic circular and annular plates using FSDT, Mechanics of Advanced Materials and Structures, 27(3) (2020) 250–264.

    Article  Google Scholar 

  11. Y. F. Zhou and Z. M. Wang, Dynamic instability of axially moving viscoelastic plate, European Journal of Mechanics/A Solids, 73(5) (2019) 1–10.

    MathSciNet  MATH  Google Scholar 

  12. M. R. Permoon, H. Haddadpour and M. Javadi, Nonlinear vibration of fractional viscoelastic plate: primary, subharmonic, and superharmonic response, International Journal of Non-Linear Mechanics, 99(5) (2018) 154–164.

    Article  Google Scholar 

  13. P. Litewka and R. Lewandowski, Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature, Computers and Structures, 229(5) (2020) 106181.

    Article  Google Scholar 

  14. T. L. Lu et al., Analysis of complex modal characteristics of fractional derivative viscoelastic rotating beams, Shock and Vibration, 2019(5) (2019) 5715694.

    Google Scholar 

  15. Y. Q. Tang and Z. G. Ma, Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed, Nonlinear Dynamics: An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 98(4) (2019) 2475–2490.

    Article  MATH  Google Scholar 

  16. Y. Q. Tang et al., Parametric vibration and numerical validation of axially moving viscoelastic beams with internal resonance, time and spatial dependent tension, and tension dependent speed, Journal of Vibration and Acoustics, 141(6) (2019) 061011.

    Article  Google Scholar 

  17. M. H. Ghayesh, Resonant vibrations of FG viscoelastic imperfect Timoshenko beams, Journal of Vibration and Control, 25(12) (2019) 1823–1832.

    Article  MathSciNet  Google Scholar 

  18. G. Q. Zhang, Z. Q. Wu and Y. J. Li, Nonlinear dynamic analysis of fractional damped viscoelastic beams, International Journal of Structural Stability and Dynamics, 19(11) (2019) 1950129.

    Article  MathSciNet  Google Scholar 

  19. A. Kelleche and F. Saedpanah, Stabilization of an axially moving viscoelastic string under a spatiotemporally varying tension, Mathematical Methods in the Applied Sciences, 41(17) (2018) 7852–7868.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. H. Zhang, J. J. Wang and C. J. Cheng, Complex-mode Galerkin approach in transverse vibration of an axially accelerating viscoelastic string, Applied Mathematics and Mechanics, 28(1) (2007) 1–8.

    Article  MATH  Google Scholar 

  21. L. Q. Chen, J. W. Zu and J. Wu, Principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string, Acta Mechanica Sinica, 20(3) (2004) 307–316.

    Article  Google Scholar 

  22. L. Q. Chen and J. Wu, Bifurcation in transverse vibration of axially accelerating viscoelastic strings, Acta Mechanica Solida Sinica, 26(1) (2005) 83–86.

    Google Scholar 

  23. L. Q. Chen, H. Chen and C. W. Lim, Asymptotic analysis of axially accelerating viscoelastic strings, International Journal of Engineering Science, 46(10) (2008) 976–985.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Q. Chen, Y. Q. Tang and J. W. Zu, Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions, Nonlinear Dynamics, 76(2) (2014) 1443–1468.

    Article  MATH  Google Scholar 

  25. J. M. Wu et al., Nonlinear vibration characteristics and stability of the printing moving membrane, Journal of Low Frequency Noise, Vibration and Active Control, 36(3) (2017) 306–316.

    Article  Google Scholar 

  26. M. Y. Shao et al., Nonlinear parametric vibration and chaotic behaviors of an axially accelerating moving membrane, Shock and Vibration, 2019 (2019) 6294814.

    Article  Google Scholar 

  27. M. Y. Shao et al., Nonlinear dynamical behaviors of a moving membrane under external excitation, Journal of Low Frequency Noise, Vibration and Active Control, 37(4) (2018) 774–788.

    Article  Google Scholar 

  28. G. Yao et al., Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment, Acta Mechanica, 227(12) (2016) 3517–3527.

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Y. Zhao et al., Nonlinear transverse vibration of an axially moving beam with an intermediate spring constraint, Journal of Vibration and Shock, 38(5) (2019) 142–145+168.

    Google Scholar 

  30. H. Y. Li et al., Nonlinear vibrations and stability of an axially moving plate immersed in fluid, Acta Mechanica Solida Sinica, 32(6) (2019) 737–753.

    Article  Google Scholar 

  31. G. Z. Sun et al., Effect of different film angle on nonlinear vibration of moving films, Mechanical Science and Technology for Aerospace Engineering, 39(5) (2020) 662–667.

    Google Scholar 

  32. D. T. Manh et al., Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells, InternationalJournal of Structural Stability and Dynamics, 20(2) (2020) 2050018.

    Article  MathSciNet  Google Scholar 

  33. N. D. Duc, S. E. Kim and D. Q. Chan, Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT, Journal of Thermal Stresses, 41(3) (2018) 331–365.

    Article  Google Scholar 

  34. N. D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi (2014).

    Google Scholar 

  35. N. D. Duc, T. Q. Quan and P. H. Cong, Nonlinear Vibration of Auxetic Plates and Shells, Vietnam National University Press, Hanoi (2021).

    Google Scholar 

  36. R. Qin, Calculation of Nonlinear Mechanics of Structures, Guangxi Science and Technology Press, Guangxi (1999).

    Google Scholar 

  37. L. Q. Chen et al., Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model, Science China Technological Sciences, 53(3) (2010) 645–655.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52075435), the Natural Science Foundation of Shaanxi Province (No. 2021JQ-480), the Natural Science Special Project of Education Department of Shaanxi Provincial Government (No. 21JK0805), and the Natural Science Basic Research Program Key Project of Shaanxi Province (No. 2022JZ-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimei Wu.

Additional information

Mingyue Shao, born in 1989, is currently a Ph.D. in Xi’an University of Technology, China. Her research interests are the vibration characteristics and stability of the membrane. E-mail: shaomingyue_xaut@163.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, M., Wang, J., Wu, J. et al. Nonlinear vibration characteristics of accelerating viscoelastic membrane. J Mech Sci Technol 36, 4925–4933 (2022). https://doi.org/10.1007/s12206-022-0906-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0906-z

Keywords

Navigation