Skip to main content

Passive Vibration Control Using Viscoelastic Materials

  • Chapter
  • First Online:
Nonlinear Structural Dynamics and Damping

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 69))

Abstract

This chapter is devoted to the use of viscoelastic materials as a strategy intended for passive vibration control in mechanical systems. It provides a review of the theoretical foundations underlying the constitutive modeling of the viscoelastic behavior, and the association of constitutive models with modern numerical resolution procedures, especially the finite element method. This currently enables the accurate prediction of the dynamic behavior of rather complex structural systems featuring viscoelastic dampers, duly accounting for the particular characteristics of the viscoelastic behavior, namely the memory effect and the dependence of stiffness and damping properties on frequency and temperature. Other relevant aspects considered are: (i) model condensation techniques, intended to reduce the computation cost involved in the evaluation of the response of viscoelastic structures using finite element models with large numbers of degrees-of-freedom; (ii) the identification of viscoelastic constitutive models from experimental data. In addition, some applications of viscoelastic materials to structures of engineering interest are presented to illustrate the use of some techniques discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Lamé coefficients can depend more generally on various parameters (see Sect. 5.2.1).

References

  1. Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. In: USA Symposium on Emerging Trends in Vibration and Noise Engineering, India (2001)

    Google Scholar 

  2. Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016)

    Article  Google Scholar 

  3. Nashif, A.D., Jones, D.I.G., Henderson, J.P.: Vibration Damping, p. 1985. Wiley, New York (1985)

    Google Scholar 

  4. Bobillot, A., Balmès, E.: Analysis and design tools for structures damped by viscoelastic materials. In: International Modal Analysis Conference—IMAC, Los Angeles (2002)

    Google Scholar 

  5. Christensen, R.M.: Theory of Viscoelasticity. Dover Publications, New York, NY (2003)

    Google Scholar 

  6. Guillot, F.M., Trivett, D.H.: Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure. J. Sound Vib. 330, 3334–3351 (2011)

    Article  Google Scholar 

  7. Pritz, T.: Measurement methods of complex Poisson’s ratio of viscoelastic materials. Appl. Acoust. 60, 279–292 (2000)

    Article  Google Scholar 

  8. Kaliske, M., Rothert, H.: Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput. Mech. 19, 228–239 (1997)

    Article  Google Scholar 

  9. Pritz, T.: Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials. J. Sound Vib. 214, 83–104 (1998)

    Article  Google Scholar 

  10. Ferry, J.D.: Viscoelastic properties of polymers. John Wiley & Sons (1980)

    Google Scholar 

  11. Emri, I.: Rheology of solid polymers. Rheol. Rev. 3, 49–100 (2005)

    Google Scholar 

  12. Dealy, J., Plazek, D.: Time-temperature superposition - a users guide. Rheol. Bull. 78, 16–31 (2009)

    Google Scholar 

  13. Soovere J, Drake ML (1984) Aerospace structures technology damping design guide. Technology review, Technical report, DTIC Document, aFWAL-TR-84-3089, vol. I

    Google Scholar 

  14. Rouleau, L., Deü, J.-F., Legay, A., Le Lay, F.: Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials. Mech. Mat. 65, 66–75 (2013)

    Google Scholar 

  15. Thorin, A., Azoug, A., Constantinescu, A.: Influence of prestrain on mechanical properties of highly-filled elastomers: measurements and modeling. Polym. Testing 31, 978–986 (2012)

    Google Scholar 

  16. Martinez-Agirre, M., Illescas, S., Elejabarrieta, M.J.: Characterisation and modelling of prestrained viscoelastic films. Int. J. Adh. Adhes. 50, 183–190 (2014)

    Google Scholar 

  17. Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Lakes, R.S.: Viscoelastic Solids. CRC Press (1998)

    Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College, London (2005)

    Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)

    Google Scholar 

  21. Yin, D., Duan, X., Zhou, X., Li, Y.: Time-based fractional longitudinal-transverse strain model for viscoelastic solids. Mech. Time-Depend. Mater. 18, 329–337 (2014)

    Article  Google Scholar 

  22. Zhang, G., Yang, H., Xu, Y.: A surrogate-model-based identification of fractional viscoelastic constitutive parameters. Mech. Time-Depend. Mater. 1, 1–19 (2015)

    Article  Google Scholar 

  23. Ghoreishy, M.H.R., Firouzbakht, M., Naderi, G.: Parameter determination and experimental verification of Bergström-Boyce hysteresis model for rubber compounds reinforced by carbon black blends. Mater. Design 53, 457–465 (2014)

    Article  Google Scholar 

  24. Lion, A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9, 83–96 (1997)

    Article  MathSciNet  Google Scholar 

  25. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, 1st edn. Springer, New York, NY (2005)

    Google Scholar 

  26. Aster, R.C., Borchers, C., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Academic Press (2013)

    Google Scholar 

  27. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton, Florida (2004)

    Google Scholar 

  28. Melchers, R.E., Beck, A.T.: Structural Reliability Analysis and Prediction, 3rd edn. Wiley (2018)

    Google Scholar 

  29. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications. SIAM, Computational Science and Engineering (2013)

    Google Scholar 

  30. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York, NY (2010)

    Google Scholar 

  31. Gamermam, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. Chapman and Hall/CRC (2006)

    Google Scholar 

  32. Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Prentice Hall Inc., Englewood Cliffs, N.J. (1987)

    MATH  Google Scholar 

  33. Khatua, T.P., Cheung, Y.K.: Bending and vibration of multilayer sandwich beams and plates. Int. J. Numer. Methods Eng. 6, 11–24 (1973)

    Article  Google Scholar 

  34. Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(3), 287–308 (2003)

    Article  MathSciNet  Google Scholar 

  35. Austin, E.M.: Variations on modeling of constrained-layer damping treatments. Shock Vib. Digest 31(4), 275–280 (1999)

    Article  Google Scholar 

  36. Rouleau, L., Deü, J.-F., Legay, A.: A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping. Mech. Syst. Signal Pr. 90, 110–125 (2017)

    Article  Google Scholar 

  37. Vasques, C., Moreira, R., Rodrigues, J.: Viscoelastic damping technologies—Part I: Modeling and finite element implementation. J. Adv. Res. Mech. Eng. 1, 76–95 (2010)

    Google Scholar 

  38. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia, PA, USA (2005)

    Google Scholar 

  39. Hetmaniuk, U., Tezaur, R., Farhat, C.: Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems. Int. J. Numer. Methods Eng. 90, 1636–1662 (2012)

    Article  MathSciNet  Google Scholar 

  40. Craig, R.R., Chang, C.-J.: A review of substructure coupling methods for dynamic analysis. Adv. Eng. Sci. 2, 393–408 (1976)

    Google Scholar 

  41. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. (2008)

    Google Scholar 

  42. Balmès, E.: Parametric families of reduced finite element models. Mech. Syst. Signal Pr. 10, 381–394 (1996)

    Article  Google Scholar 

  43. Balmès, E., Bobillot, A.: Analysis and design tool for structures damped by viscoelastic materials. In: Proceedings of the 21st ISMA Conference, Leuven, Belgium (2002)

    Google Scholar 

  44. Hu, B.-G., Dokaishi, M., Mansour, W.: A modified MSE method for viscoelastic systems: a weighted stiffness matrix approach. Trans. ASME J. Appl. Mech. 117, 226–231 (1995)

    Google Scholar 

  45. Johnson, C., Kienholz, D., Rogers, L.: Finite element prediction of damping in beams with constrained vicoelastic layers. Shock Vib. 1, 71–81 (1980)

    Google Scholar 

  46. Lin, R., Lim, M.: Complex eigensensitivity-based characterization of structures with viscoelastic damping. J. Acoust. Soc. Am. 100, 3182–3191 (1996)

    Article  Google Scholar 

  47. Plouin, A.-S., Balmès, E.: Pseudo-modal representations of large models with viscoelastic behavior. In: Proceedings of the 16th ISMA Conference, Leuven, Belgium (1998)

    Google Scholar 

  48. Zhang, S., Chen, H.: A study on the damping characteristics of laminated composites with integral viscoelastic layers. Compos. Struct. 74, 63–69 (2006)

    Article  Google Scholar 

  49. Dickens, J., Nakagawa, J., Wittbrodt, M.: A critique of mode acceleration and modal truncation augmentation methods for modal response analysis. Comput. Struct. (1997)

    Google Scholar 

  50. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MathSciNet  Google Scholar 

  51. Daya, E., Potier-Ferry, M.: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput. Struct. 79 (2001)

    Google Scholar 

  52. Tran, G., Ouisse, M., Bouhaddi, N.: A robust component mode synthesis method for stochastic damped virboacoustics. Mech. Syst. Signal Pr. 24, 164–181 (2010)

    Article  Google Scholar 

  53. de Lima, A., da Silva, A., Rade, D., Bouhaddi, N.: Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures. Eng. Struct. (2010)

    Google Scholar 

  54. Baker, G.J., Graves-Moris, P.: Padé Approximants. Cambridge University Press (1996)

    Google Scholar 

  55. Avery, P., Farhat, C., Reese, G.: Fast frequency sweep computations using a multi-point Padé-based reconstruction method and an efficient iterative solver. Int. J. Numer. Methods Eng. 69, 2848–2875 (2007)

    Article  Google Scholar 

  56. Chazot, J.-D., Nennig, B., Chettah, A.: Harmonicresponse computation of viscoelastic multilayered structures using a ZPST shell element. J. Sound Vib. 89, 2522–2530 (2011)

    Google Scholar 

  57. Rumpler, R., Göransson, P.: An assessment of two popular Padé-based approaches for fast frequency sweeps of time-harmonic finite element problems. In: Proceedings of Acoustics’17, Boston, USA (2017)

    Google Scholar 

  58. Millithaler, P., Dupont, J.-B., Ouisse, M., Sadoulet-Reboul, E., Bouhaddi, N.: VIscoelastic property tuning for reducing noise radiated by switched-reluctance machines. J. Sound Vib. 407, 191–208 (2017)

    Article  Google Scholar 

  59. Hirsou, D., Le Quere, E., Magnier, M., Selosse, D.: Rotary electric machine, and in particular motor vehicle alternator, comprising a stator elastically mounted in a heat-conductive resin. European patent EP1249064B1 (2002)

    Google Scholar 

  60. Hernandéz, W.P., Castello, D.A., Roitman, N., Magluta, C.: Thermorheologically simple materials: a Bayesian framework for model calibration and validation. J. Sound Vib. 402(18), 14–30 (2017)

    Article  Google Scholar 

  61. Borges, F.C.L., Castello, D.A., Magluta, C., Rochinha, F.A., Roitman, N.: An experimental assessment of internal variables constitutive models for viscoelastic materials. Mech. Syst. Signal Process. 50–51, 27–40 (2015)

    Article  Google Scholar 

  62. Castello, D.A., Rochinha, F.A., Roitman, N., Magluta, C.: Constitutive parameter estimation of a viscoelastic model with internal variables. Mech. Syst. Signal Process. 22(8), 1840–1857 (2008)

    Article  Google Scholar 

  63. Zhang, E., Chazot, J.D., Antoni, J., Hamdia, M.: Bayesian characterization of Young’s modulus of viscoelastic materials in laminated structures. J. Sound Vib. 332(16), 3654–3666 (2013)

    Article  Google Scholar 

  64. Faming, L., Liu, C., Carroll, R.J.: Advanced Markov Chain Monte Carlo Methods—Learning from Past Samples. Wiley, Chichester, Wester Sussex (2010)

    MATH  Google Scholar 

  65. Wright, J.R., Cooper, J.E.: Introduction to Aeroelasticity and Loads, 2nd edn. Wiley (2015)

    Google Scholar 

  66. NASA: Control of Aeroelastic Response: Taming the Threats. NASA Historical Series 100 (2004)

    Google Scholar 

  67. Lacarbonara, W., Cetraro, M.: Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int. J. Aeronaut. Space Sci. 12, 331–345 (2011)

    Google Scholar 

  68. Merrett, C.G., Hilton, H.H.: Elastic and viscoelastic panel flutter in incompressible, subsonicandsupersonicflows. J. Aeroelast. Struct. Dyn. 2(2010), 53–80 (2010)

    Google Scholar 

  69. Cunha-Filho de Lima, A.M.G., Donadon, M.V., Leão, L.S.: Flutter suppression of plates using passive constrained viscoelastic layers. Mech. Syst. Signal Process. 79, 99–111 (2016)

    Article  Google Scholar 

  70. Martins, P.C.O., DA Guimarães, Pereira, Marques, F.D., Rade, D.A.: Numerical and experimental investigation of aeroviscoelastic systems. Mech. Syst. Signal Process. 85, 680–697 (2017)

    Article  Google Scholar 

  71. Cunha-Filho, A.G., Briend, Y.P.J., Lima, A.M.G., Donadon, M.V.: An efficient iterative model reduction method for aeroviscoelastic panel flutter analysis in the supersonic regime. Mech. Syst. Signal Process. 575–588 (2018)

    Google Scholar 

  72. de Lima, A.M.G., da Silva, A.R., Rade, D.A., Bouhaddi, N.: Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures. Eng. Struct. 32, 1479–1488 (2010)

    Article  Google Scholar 

  73. Bobillot, A., Balmés, A.: Iterative techniques for eigenvalue solutions of damped structures coupled with fluids. AIAA J. 32, 2002-1391 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rade, D.A., Deü, JF., Castello, D.A., de Lima, A.M.G., Rouleau, L. (2019). Passive Vibration Control Using Viscoelastic Materials. In: Jauregui, J. (eds) Nonlinear Structural Dynamics and Damping. Mechanisms and Machine Science, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-13317-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13317-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13316-0

  • Online ISBN: 978-3-030-13317-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics