Skip to main content
Log in

Micromechanical modeling for viscoplastic properties of enzyme degradable semi-crystalline poly (ε-caprolactone)

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This work provide theoretical understandings for the enzyme-degradable PCL, and assist its structural designs and engineering applications. An energy-dependent evolution model is developed to reflect the enzyme-triggered decrystallization of crystals and the further dissolution by applying a chain-broken chemical reaction. Then, the mechanical properties of the enzyme-degradable semicrystalline PCL is modelled through the homogenization-based procedure by the volume-average of a collection of laminated inclusions with crystals and amorphous phase. A dual-phase-lag diffusion model is advanced to solve the enzyme concentrations in the PCL. The model is calibrated by the experiments and then applied for the chemomechanical properties of the PCL when under enzyme conditions. Some numerical examples are conducted to discuss effects of the enzyme concentration and the crystallinity on the crystallographic axe evolution as well as the overall chemomechanical properties of the semicrystalline PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Feng et al., Engineering cartilage tissue based on cartilage-derived extracellular matrix cECM/PCL hybrid nanofibrous scaffolds, Materials and Design, 193 (2020) 108773.

    Article  Google Scholar 

  2. M. G. Gandolfi et al., Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration, Materials Science and Engineering: C, 102 (2019) 341–361.

    Article  Google Scholar 

  3. L. G. Griffith, Polymeric biomaterials, Acta. Mater., 48 (2000) 263–277.

    Article  Google Scholar 

  4. K. P. Andriano et al., Technical note: biomechanical analysis of two absorbable fracture fixation pins after long-term canine implantation, J. Biomed. Mater. Res. Part B, 48 (1999) 528–533.

    Article  Google Scholar 

  5. S. L. Buffington et al., Enzymatically triggered shape memory polymers, Acta Biomaterialia, 84 (2019) 88–97.

    Article  Google Scholar 

  6. B. Narasimhan and S. K. Mallapragada, Dissolution of amorphous and semicrystalline polymers: mechanisms and novel applications, Recent Res. Dev. Macromol Res., 3 (2) (1998) 1–24.

    Google Scholar 

  7. W. H. Lee et al., Kinetics of solvent-induced crystallization of poly(ethylene terephthalate) at the final stage, Journal of Polymer Research, 10 (2) (2003) 133–137.

    Article  Google Scholar 

  8. H. Chen et al., Highly pH-sensitive polyurethane exhibiting shape memory and drug release, Polymer Chemistry, 5 (17) (2014) 5168.

    Article  Google Scholar 

  9. F. He, S. Li, M. Vert and R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolymers prepared from ∊-caprolactone and poly(ethylene glycol), Polymer, 44 (18) (2003) 5145–5151.

    Article  Google Scholar 

  10. M. F. Herman and S. F. Edwards, A reptation model for polymer dissolution, Macromolecules, 23 (15) (1990) 3662–3671.

    Article  Google Scholar 

  11. E. Kaunisto et al., A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging, Journal of Controlled Release, 147 (2) (2010) 232–241.

    Article  Google Scholar 

  12. B. A. MillerChou and J. L. Koenig, A review of polymer dissolution, Progress in Polymer Science, 28 (8) (2003) 1223–1270.

    Article  Google Scholar 

  13. B. Narasimhan and N. A. Peppas, The physics of polymer dissolution: modeling approaches and experimental behavior, Polymer Analysis Polymer Physics. Advances in Polymer Science, 128 (1997).

  14. S. K. Mallapragada and N. A. Peppas, Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water, Journal of Polymer Science, Part B: Polymer Physics, 34 (7) (1996) 1339–1346.

    Article  Google Scholar 

  15. C. M. Hassan, J. H. Ward and N. A. Peppas, Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes, Polymer, 41 (18) (2000) 6729–6739.

    Article  Google Scholar 

  16. K. Yu et al., Dissolution of covalent adaptable network polymers in organic solvent, Journal of the Mechanics and Physics of Solids, 109 (2017) 78–94.

    Article  Google Scholar 

  17. F. Bedoui et al., Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers, Acata. Materialia, 54 (2006) 1513–1523.

    Article  Google Scholar 

  18. J. A. W. V. Dommelen et al., Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 51 (2003) 519–541.

    Article  MATH  Google Scholar 

  19. M. Ghasemi et al., Dissolution of semicrystalline polymer fibers: numerical modeling and parametric analysis, AIChE Journal (2017) 63.

  20. B. J. Lee, D. M. Parks and S. Ahzi, Micromechanical modeling of large plastic deformation and texture evolution in semicrystalline polymers, Journal of the Mechanics and Physics of Solids, 41 (10) (1993) 1651–1687.

    Article  MATH  Google Scholar 

  21. S. K. Mallapragada and N. A. Peppas, Crystal unfolding and chain disentanglement during semicrystalline polymer dissolution, Aiche Journal, 43 (4) (1997) 870–876.

    Article  Google Scholar 

  22. S. Nikolov et al., Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 50 (11) (2002) 2275–2302.

    Article  MATH  Google Scholar 

  23. S. Nikolov, R. A. Lebensohn and D. Raabe, Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 54 (7) (2006) 1350–1375.

    Article  MATH  Google Scholar 

  24. S. Felder et al., Incorparating crystallinity distributions into a thermo-mechancially coupled constitutive model for semi-crystalline polymers, International Journal of Plasticity (2020) (In Press).

  25. J. Li, I. Romero and J. Segurado, Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization, International Journal of Plasticity, 119 (2019) 313–330.

    Article  Google Scholar 

  26. A. M. Pantel et al., A thermo-mechanical large deformation constitutive model for polymers based on material network description: application to a semi-crystalline polyamide 66, International Journal of Plasticity, 67 (2015) 102–126.

    Article  Google Scholar 

  27. C. M. Popa et al., Formulation and implementation of a constitutive model for semicrystalline polymers, International Journal of Plasticity, 61 (2014) 128–156.

    Article  Google Scholar 

  28. H. Wang et al., Confined crystallinzaiton of polyethylene oxide in anolayer assemblies, Science, 323 (2009) 757–760.

    Article  Google Scholar 

  29. S. Cheng, D. M. Smith and C. Y. Li, How does nanoscale crystalline structure affect ion transport in solid polymer electrolyte?, Macromolecules, 47 (2014) 3978–3986.

    Article  Google Scholar 

  30. B. C. Hancock and G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, Journal of Pharmaceutical Science, 86 (1997) 1–12.

    Article  Google Scholar 

  31. A. Gros et al., A physically-based model for strain-induced crystallization in natural rubber, part I: life cycle of a crystallite, Journal of the Mechanics and Physics of Solids, 125 (2019) 164–177.

    Article  MathSciNet  Google Scholar 

  32. J. A. W. van Dommelen et al., Micromechanical modeling of the thermo-elasto-viscoplastic behavior of semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 51 (3) (1999) 519–541.

    Article  MATH  Google Scholar 

  33. C. Miehe, J. Schotte and M. Lambrecht, Homogenization of inelastic solid materials at finite strains based on incremental minimization principles, Application to the texture analysis of polycrystals, Journal of the Mechanics and Physics of Solids, 50 (10) (2002) 2123–2167.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Qi et al., Thermomechanical behavior of shape memory elastomeric composites, Journal of the Mechanics and Physics of Solids, 60 (1) (2012) 67–83.

    Article  Google Scholar 

  35. C. Yang et al., Chemo-thermomechanical behaviors of enzyme-degradable shape memory composite and its heat-enzyme triggered shape memory properties, Computational Materials Science, 193 (2) (2021) 110382.

    Article  Google Scholar 

  36. Y. Mao et al., A viscoelastic model for hydrothermally activated malleable covalent network polymer and its application in shape memory analysis, Journal of the Mechanics and Physics of Solids (2019).

  37. S. A. Chester and L. Anand, A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels, Journal of the Mechanics & Physics of Solids, 59 (10) (2011) 1978–2006.

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Yang et al., A chemo-mechanical model of lithiation in silicon, Journal of the Mechanics and Physics of Solids, 70 (2014) 349–361.

    Article  Google Scholar 

  39. D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, International Journal of Heat and Mass Transfer, 38 (17) (1995) 3231–3240.

    Article  Google Scholar 

  40. J. K. Chen, J. E. Beraun and D. Y. Tzou, A dual-phase-lg diffusion model for interfacial layer growth in metal matrix composites, Journal of Materials Science, 34 (24) (1999) 6183–6187.

    Article  Google Scholar 

  41. Y. Mao et al., Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change, Journal of the Mechanics and Physics of Solids, 85 (2015) 219–244.

    Article  Google Scholar 

  42. J. K. Chen, J. E. Beraun and D. Y. Tzou, A dual-phase-lag diffusion model for interfacial layer growth in metal matrix composites, Journal of Materials Science, 34 (24) (1999) 6183–6187.

    Article  Google Scholar 

  43. A. Sedighiamiri et al., Micromechanical Modeling of The Deformation Kinetics of Semicrystalline Polymers, Eindhoven: Technische Universiteit Eindhoven (2012) (Doi: https://doi.org/10.6100/IR735441).

    Google Scholar 

  44. Q. Ge et al., Thermomechanical behavior of shape memory elastomeric composites, Journal of the Mechanics and Physics of Solids, 60 (1) (2012) 67–83.

    Article  Google Scholar 

  45. S. L. Buffington et al., Enzymatically triggered shape memory polymers, Acta Biomaterialia, 84 (2019) 88–97.

    Article  Google Scholar 

  46. V. Speranza et al., Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies, The Scientific World Journal (2014).

  47. T. Patrício and P. Bártolo, Thermal stability of PCL/PLA blends produced by physical blending process, Procedia Engineering, 59 (2013) 292–297.

    Article  Google Scholar 

  48. J. M. Robertson, H. Birjandi Nejad and P. T. Mather, Dual-spun shape memory elastomeric composites, ACS Macro Letters, 4 (4) (2015) 436–440.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge with great gratitude for the supports of the National Science Foundation of China (Grant No: 11772124), the Science Foundation of Hunan Province (Grant No: 2018JJ3027) and National Science Foundation of China for Outstanding Youth (Grant No: 11922206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Mao.

Additional information

Yiqi Mao is an Associate Professor of Hunan University. He received his Ph.D. in Engineering Mechanics from Hunan University. His research interests include shape-memory polymer, self-healing materials, deformation theory and etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, C., Hou, S. et al. Micromechanical modeling for viscoplastic properties of enzyme degradable semi-crystalline poly (ε-caprolactone). J Mech Sci Technol 35, 5081–5097 (2021). https://doi.org/10.1007/s12206-021-1025-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-1025-y

Keywords

Navigation