Skip to main content
Log in

Thermo-electro-mechanical vibration and buckling analysis of a functionally graded piezoelectric porous cylindrical microshell

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the vibration and buckling behavior of a functionally graded piezoelectric porous cylindrical microshell under thermo-electro-mechanical loads are explored on the basis of modified couple stress theory and higher-order shear deformation theory. First, the model of a functionally graded piezoelectric porous cylindrical microshell composed of piezoelectric materials with gradient change in the thickness direction was described. Second, the governing equations of the microshell were derived by Hamilton’s principle and Maxwell equation. Third, the modal frequency and buckling equations of the microshell with simply supported ends were obtained on the basis of harmonic trigonometric functions. Finally, the effects of parameters on the modal frequency and buckling behavior were carried out by case studies. The results show that the modal frequency of the microshell can be adjusted by changing the porosity volume fraction, power index, applied voltage, axial load and geometric dimensions. It is also found that the vibration of the microshell is suppressed by positive voltage and axial compression but is strengthened by negative voltage and axial tension, and the material length scale parameter increases stiffness. In addition, the effects of applied voltage and axial load on the buckling behavior are larger than those of temperature. Results can be used to guide the design and application of piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L :

Length of microshell

R :

Mid-surface radius of microshell

h :

Thickness of microshell

x :

Axial coordinate

θ :

Circumferential coordinate

y :

Tangential coordinate

z :

Radial coordinate

T i, T o :

Temperatures of inner and outer surfaces

T io :

Temperature difference

P(z):

Material properties of microshell

P i, P o :

Material properties of inner and outer surfaces

N :

Power index

α p :

Porosity volume fraction

u x :

Axial displacement component

u y :

Tangential displacement component

u z :

Radial displacement component

u :

Axial displacement component of any point on the mid-surface

v :

Tangential displacement component of any point on mid-surface

w :

Radial displacement component of any point on mid-surface

φ x, φ y :

Rotation angles of mid-surface normal around x and y axes

[C]:

Elastic moduli matrix

[β]:

Thermal moduli matrix

[d]:

Piezoelectric moduli matrix

[ξ]:

Dielectric moduli matrix

{σ}:

Stress vector

{ε}:

Strain vector

{E}:

Electric field vector

{D}:

Electric displacement vector

{p}:

Pyroelectric constants vector

σ xx, σ yy :

Normal stresses

T xy :

In-plane shear stress

T xz, T yz :

Shear stresses along thickness direction

ε xx, ε yy :

Normal strains

γ xy :

In-plane shear strain

γ xz, γ yz :

Shear strains along thickness direction

Dx, Dy, Dz :

Electric displacement components

E x, E y, E z :

Electric field components

c ije :

Equivalent elastic moduli components

ξ iie :

Equivalent dielectric moduli components

d ije :

Equivalent piezoelectric moduli components

β iie :

Equivalent thermal moduli components

p ie :

Equivalent pyroelectric constants components

Φ:

Electric potential inside the microshell

φ :

Electric potential variation

V :

Applied voltage

{m}:

Vector of higher-order stress tensor

{X}:

Vector of symmetric rotation gradient tensor

l :

Material length scale parameter

m ij :

Components of higher-order stress tensor

X ij :

Components of symmetric rotation gradient tensor

U :

Total strain energy

U c :

Strain energy based on CCT

U mc :

Strain energy based on MCST

K :

Kinetic energy

W :

Work done by external loads

\(N_{XX}^{T}\) :

Thermal load

N a :

Static axial load

\(N_{XX}^{p}\) :

Electric load

t :

Time variable

l 0, l 1, l 2, l 3, l 4, l 6 :

Generalized inertia constants

N ij, Q i :

Classical forces

M ij, S ij, J i :

Classical moments

Y ij :

Nonclassical forces

Γ ij, P ij, T ij :

Nonclassical moments

m :

Axial wavenumber

n :

Circumferential wavenumber

ω :

Modal frequency of microshell

[G]:

Mass matrix

{Δ}:

Displacement amplitude vector

{X}:

External load vector

[Z]:

Total stiffness matrix

[Z 0]:

Stiffness matrix

[Z N]:

Coefficient matrix of axial load

[Z T]:

Coefficient matrix of temperature difference

[Z V]:

Coefficient matrix of applied voltage

N cr :

Static buckling load

V cr :

Buckling voltage

Ω:

Dimensionless frequency

N d :

Dimensionless axial load

N acr :

Defined buckling load

N dcr :

Dimensionless buckling load

h/R :

Dimensionless thickness

L/R :

Dimensionless length

References

  1. Q. L. Zhao, S. Q. Liu, J. H. Chen, G. P. He, J. J. Di, L. Zhao, T. T. Su, M. Y. Zhang and Z. L. Hou, Fast-moving piezoelectric micro-robotic fish with double caudal fins, Robotics and Autonomous Systems, 140 (2021) 103733.

    Article  Google Scholar 

  2. J. T. Zhang, D. Qu, Z. Fang and C. Shu, Optimization of a piezoelectric wind energy harvester with a stepped beam, Journal of Mechanical Science and Technology, 34(11) (2020) 4357–4366.

    Article  Google Scholar 

  3. F. S. Bai, L. Wang, K. D. Yang, Z. Y. He, G. Qi and J. Twiefel, Theoretical modeling and experimental investigation of a V-shaped traveling wave piezoelectric transducer for ultrasonic cavitation peening: part B, Applied Acoustics, 178 (2021) 107972.

    Article  Google Scholar 

  4. P. P. Shi, J. Xie and S. Hao, Static response of functionally graded piezoelectric-piezomagnetic hollow cylinder/spherical shells with axial/spherical symmetry, Journal of Mechanical Science and Technology, 35(4) (2021) 1583–1596.

    Article  Google Scholar 

  5. A. A. Jandaghian and O. Rahmani, Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading, Journal of Intelligent Material Systems and Structures, 28(20) (2017) 3039–3053.

    Article  Google Scholar 

  6. J. P. Su, Y. G. Qu, K. Zhang, Q. Zhang and Y. Tian, Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports, Thin-Walled Structures, 164 (2021) 107838.

    Article  Google Scholar 

  7. M. Askari, E. Brusa and C. Delprete, On the vibration analysis of coupled transverse and shear piezoelectric functionally graded porous beams with higher-order theories, The Journal of Strain Analysis for Engineering Design, 56(1) (2021) 29–49.

    Article  Google Scholar 

  8. A. Lal, N. L. Shegokar and B. N. Singh, Finite element based nonlinear dynamic response of elastically supported piezoelectric functionally graded beam subjected to moving load in thermal environment with random system properties, Applied Mathematical Modelling, 44 (2017) 274–295.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. F. Chen, H. L. Chen, X. L. Ma, G. Y. Jin, T. G. Ye, Y. T. Zhang and Z. G. Liu, The isogeometric free vibration and transient response of functionally graded piezoelectric curved beam with elastic restraints, Results in Physics, 11 (2018) 712–725.

    Article  Google Scholar 

  10. F. N. Dehnavi and A. Parvizi, Electrothermomechanical behaviors of spherical vessels with different configurations of functionally graded piezoelectric coating, Journal of Intelligent Material Systems and Structures, 29(8) (2018) 1697–1710.

    Article  Google Scholar 

  11. M. R. Barati, H. Shahverdi and A. M. Zenkour, Electromechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mechanics of Advanced Materials and Structures, 24(12) (2017) 987–998.

    Article  Google Scholar 

  12. M. Komijani, Y. Kiani, S. E. Esfahani and M. R. Eslami, Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams, Composite Structures, 98 (2013) 143–152.

    Article  Google Scholar 

  13. A. A. Atai and D. Lak, Analytic investigation of effect of electric field on elasto-plastic response of a functionally graded piezoelectric hollow sphere, Journal of Mechanical Science and Technology, 30(1) (2016) 113–119.

    Article  Google Scholar 

  14. X. T. He, Y. Z. Wang, S. J. Shi and J. Y. Sun, An electroelastic solution for functionally graded piezoelectric material beams with different moduli in tension and compression, Journal of Intelligent Material Systems and Structures, 29(8) (2018) 1649–1669.

    Article  Google Scholar 

  15. W. Tian, T. Zhao and Z. C. Yang, Nonlinear electro-thermomechanical dynamic behaviors of a supersonic functionally graded piezoelectric plate with general boundary conditions, Composite Structures, 261 (2021) 113326.

    Article  Google Scholar 

  16. A. M. Zenkour and Z. S. Hafed, Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory, Mechanics of Advanced Materials and Structures, 27(18) (2020) 1551–1562.

    Article  Google Scholar 

  17. C. Othmani, F. Takali, A. Njeh and M. H. Ben Ghozlen, Numerical simulation of Lamb waves propagation in a functionally graded piezoelectric plate composed of GaAs-AlAs materials using Legendre polynomial approach, Optik-International Journal for Light and Electron Optics, 142 (2017) 401–411.

    Article  Google Scholar 

  18. J. Q. Li, Y. Xue, F. M. Li and Y. Narita, Active vibration control of functionally graded piezoelectric material plate, Composite Structures, 207 (2019) 509–518.

    Article  Google Scholar 

  19. G. G. Sheng and X. Wang, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Applied Mathematical Modelling, 34(9) (2010) 2630–2643.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Zenkour and M. H. Aljadani, Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory, Mechanics of Materials, 151 (2020) 103632.

    Article  Google Scholar 

  21. A. M. Zenkour and M. H. Aljadani, Thermo-electrical buckling response of actuated functionally graded piezoelectric nano-scale plates, Results in Physics, 13 (2019) 102192.

    Article  Google Scholar 

  22. M. Mohammad-Abadi and A. R. Daneshmehr, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, 74 (2014) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Chen and S. J. Zheng, Size-dependent models of 0–1/0–3 polarized PLZT unimorphs and bimorphs based on a modified couple stress theory, Mechanics Research Communications, 98 (2019) 42–49.

    Article  Google Scholar 

  24. A. Karamanli and T. P. Vo, Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory, Composite Structures, 246 (2020) 112401.

    Article  Google Scholar 

  25. M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, 57(4) (1975) 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang and P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8) (2003) 1477–1508.

    Article  MATH  Google Scholar 

  27. C. W. Lim, G. Zhang and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78 (2015) 298–313.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1) (1972) 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54(9) (1983) 4703–4710.

    Article  Google Scholar 

  30. F. Yang, A. C. M. Chong, D. C. C. Lam and P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731–2743.

    Article  MATH  Google Scholar 

  31. Y. T. Beni, F. Mehralian and H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Composite Structures, 120 (2015) 65–78.

    Article  Google Scholar 

  32. R. Ansari, M. F. Shojaei, V. Mohammadi, R. Gholami and M. A. Darabi, Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates, Latin American Journal of Solids and Structures, 11(13) (2014) 2351–2378.

    Article  Google Scholar 

  33. S. Sahmani, R. Ansari, R. Gholami and A. Darvizeh, Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, Composites Part B, 51 (2013) 44–53.

    Article  MATH  Google Scholar 

  34. M. L. Dehsaraji, M. Arefi and A. Loghman, Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect, Defence Technology, 17(1) (2021) 119–134.

    Article  Google Scholar 

  35. S. Zeng, B. L. Wang and K. F. Wang, Nonlinear vibration of piezoelectric sandwich nanoplate with a functionally graded porous core with consideration of flexoelectric effect, Composite Structures, 207 (2019) 340–351.

    Article  Google Scholar 

  36. M. Askari, A. R. Saidi and A. S. Rezaei, On natural frequencies of Levy-type thick porous-cellular plates surrounded by piezoelectric layers, Composite Structures, 179 (2017) 340–354.

    Article  Google Scholar 

  37. M. Askari, E. Brusa and C. Delprete, Electromechanical vibration characteristics of porous bimorph and unimorph doubly curved panels, Actuators, 9(1) (2020) 7.

    Article  Google Scholar 

  38. M. Askari, A. R. Saidi and A. S. Rezaei, An investigation over the effect of piezoelectricity and porosity distribution on natural frequencies of porous smart plates, Journal of Sandwich Structures and Materials, 22(7) (2020) 2091–2124.

    Article  Google Scholar 

  39. M. R. Barati and A. M. Zenkour, Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions, Journal of Vibration and Control, 24(10) (2018) 1910–1926.

    Article  MathSciNet  Google Scholar 

  40. Y. Q. Wang, Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state, Acta Astronautica, 143 (2018) 263–271.

    Article  Google Scholar 

  41. L. B. Nguyen, C. H. Thai, A. M. Zenkour and H. Nguyen-Xuan, An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates, International Journal of Mechanical Sciences, 157–158 (2019) 165–183.

    Article  Google Scholar 

  42. A. M. Zenkour and M. H. Aljadani, Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates, European Journal of Mechanics/A Solids, 78 (2019) 103835.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Sadeghi Rad, A. R. Saidi, A. S. Rezaei and M. Askari, Shear deformation theories for elastic buckling of fluid-infiltrated porous plates: an analytical approach, Composite Structures, 254 (2020) 112829.

    Article  Google Scholar 

  44. Y. F. Liu and Y. Q. Wang, Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells, Nanomaterials, 9(2) (2019) 301.

    Article  Google Scholar 

  45. M. Ghadiri and H. SafarPour, Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment, Journal of Thermal Stresses, 40(1) (2017) 55–71.

    Article  Google Scholar 

  46. N. Zhang, X. Zhao, S. J. Zheng and D. J. Chen, Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams, Smart Materials and Structures, 29(4) (2020) 045025.

    Article  Google Scholar 

  47. Y. Q. Wang, C. Ye and J. W. Zu, Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities, Applied Mathematics and Mechanics, 39(11) (2018) 1587–1604.

    Article  MathSciNet  Google Scholar 

  48. J. N. Reddy, A simple higher-order theory for lamnated composite plates, Journal of Applied Mechanics, 51(4) (1984) 745–752.

    Article  MATH  Google Scholar 

  49. D. P. Zhang, Y. J. Lei and Z. B. Shen, Thermo-electromechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions, International Journal of Mechanical Sciences, 131–132 (2017) 1001–1015.

    Article  Google Scholar 

  50. S. Zeng, B. L. Wang and K. F. Wang, Analyses of natural frequency and electromechanical behavior of flexoelectric cylindrical nanoshells under modified couple stress theory, Journal of Vibration and Control, 25(3) (2019) 559–570.

    Article  MathSciNet  Google Scholar 

  51. C. W. Lim, Y. F. Ma, S. Kitipornchai, C. M. Wang and R. K. K. Yuen, Buckling of vertical cylindrical shells under combined end pressure and body force, Journal of Engineering Mechanics, 129(8) (2003) 876–884.

    Article  Google Scholar 

  52. X. Q. Fang and C. S. Zhu, Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory, Composite Structures, 160 (2017) 1191–1197.

    Article  Google Scholar 

  53. A. Alibeigloo and M. Shaban, Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity, Acta Mechanica, 224(7) (2013) 1415–1427.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Zeighampour and Y. T. Beni, A shear deformable cylindrical shell model based on couple stress theory, Archive of Applied Mechanics, 85(4) (2015) 539–553.

    Article  MATH  Google Scholar 

  55. Y. W. Wang, K. Xie, T. R. Fu and W. Zhang, A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory, The European Physical Journal Plus, 135(1) (2020) 1–19.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 51965042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Liu.

Additional information

Wenguang Liu received his Ph.D. degree from Nanjing University of Aeronautics and Astronautics, China. He is currently working as an Associate Professor in Nanchang Hangkong University, China.

Zhipeng Lyu is currently studying as a graduating student in Nanchang Hangkong University, China. His research interests include multi-field coupling dynamics of piezoelectric structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Z., Liu, W., Liu, C. et al. Thermo-electro-mechanical vibration and buckling analysis of a functionally graded piezoelectric porous cylindrical microshell. J Mech Sci Technol 35, 4655–4672 (2021). https://doi.org/10.1007/s12206-021-0933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0933-1

Keywords

Navigation