Skip to main content
Log in

Modeling of air-side heat transfer and pressure drop of straight fin-tube no-frost evaporators for a household refrigerator

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A mathematical model is proposed for predicting the air-side pressure drop and heat-transfer rate of straight fin-tube heat exchangers of a household refrigerator under nofrosting conditions. The six-sigma method is employed to optimize the preliminary critical-to-quality (CTQ). The proposed model is consistent with the experimental data with an error of less than 15 %. The numerical results agree well with the experimental data. It can be applied to evaluate the thermal-hydraulic performance of a fin-tube heat exchanger with varying fin pitch along the airflow direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A b/w_F :

Surface area of outer tube in j-section without fin thickness

A c :

Cross-section area

A f :

Surface fin area in j-section

A o :

Surface area of outer tube in j-section

A Tube :

Cross-section tube area

A 0 :

Full cross-section area

C:

Nozzle discharge coefficient

C j :

Friction coefficient of j section

d H :

Hydraulic diameter

d i :

Inner diameter of tube

do :

Outer diameter of tube

D :

Diameter

ε eq :

Average roughness height

f B,1 :

Function of bypass body 1

f B,2 :

Function of bypass body 2

f H :

Function of main body

\({{\bar h}_c}\) :

Mean heat-transfer coefficient of coolant

\({{\bar h}_o}\) :

Mean heat-transfer coefficient of air

L :

Length

l j :

Length of j-section

Nu :

Nusselt number

Π:

Perimeter

ΔPN :

Pressure drop of nozzle

ΔPB,1 :

Pressure drop of bypass body 1

ΔPb,2 :

Pressure drop of bypass body 2

ΔPh :

Pressure drop of main body

ΔPp :

Prediction of pressure drop

ΔPe :

Experiment of pressure drop

ΔPj :

Pressure drop of j-section

ΔPfj :

Frictional pressure drop of j-section

ΔPtj :

Tube bank pressure drop of j-section

ρair :

Density of air

Pr :

Prandtl number

q c :

Heat flux density of coolant

q a :

Heat flux density of air

Q p :

Prediction of heat-transfer rate

Q e :

Experiment of heat-transfer rate

R e :

Reynolds number

Re dH :

Reynolds number of hydraulic diameter

Re n :

Reynolds number of narrow cross-section

S l :

Longitudinal pitch

S t :

Transverse pitch

t a :

Temperature of air

t F :

Temperature of fin

t o :

Temperature of outer tube surface

\({{\bar t}_o}\) :

Mean temperature of outer tube surface

\({{\bar t}_c}\) :

Mean temperature of coolant

u j :

Number of tubes in the airflow direction in j-section

V dh :

Velocity of hydraulic diameter

V narrow :

Velocity of narrow cross-section

VB,1 :

Air volume flow rate of bypass body 1

V B,2 :

Air volume flow rate of bypass body 2

\({\dot V_H}\) :

Air volume flow rate of main body

V a :

Total air volume flow rate

Y:

Expansion factor

References

  1. A. R. El-Sayed, M. El Morsi and N. A. Mahmoud, A review of the potential replacements of HCFC, HFCs using environment-friendly refrigerants, Int. J. Air-Cond. Ref., 26 (2018) 1830002.

    Article  Google Scholar 

  2. J. H. Jeong, S. G. Park, D. Sarker and K. S. Chang, Numerical simulation of the effects of a suction line heat exchanger on vapor compression refrigeration cycle performance, Journal of Mechanical Science and Technology, 26(4) (2012) 213–1226.

    Article  Google Scholar 

  3. A. Sellami, E. Aridhi, D. Mzoughi and A. Mami, Performance of the bond graph approach for the detection and localization of faults of a refrigerator compartment containing an ice quantity, Int. J. Air-Cond. Ref., 26 (2018) 1850028.

    Article  Google Scholar 

  4. A. M. Jacobi and R. K. Shah, Air-side flow and heat transfer in compact heat exchangers: a discussion of enhancement mechanisms, Heat Transfer Engineering, 19 (1988) 1–13.

    Google Scholar 

  5. N. Chimres and S. Wongwises, A critical review of the prominent method of heat transfer enhancement for the fin-and-tube heat exchanger by interrupted fin surface. The vortex generators approach, Int. J. Air-Cond. Ref., 26 (2018) 1830001.

    Article  Google Scholar 

  6. P. K. Bansal and T. C. Chin, Modelling and optimization of wire-and-tube condenser, Int. Journal Refrigeration, 26 (2003) 601–613.

    Article  Google Scholar 

  7. J. K. Kim, C. G. Roh, H. Kim and J. H. Jeong, An experimental and numerical study on an inherent capacity modulated linear compressor for home refrigerators, International Journal of Refrigeration, 34(6) (2011) 1415–1423.

    Article  Google Scholar 

  8. J. K. Kim and J. H. Jeong, Performance characteristics of a capacity-modulated linear compressor for home refrigerators, Int. Journal Refrigeration, 36 (2013) 776–785.

    Article  Google Scholar 

  9. L. Kim, K. Son, D. Sarker, J. H. Jeong and S. H. Lee, An assessment of models for predicting refrigerant characteristics in adiabatic and non-adiabatic capillary tubes, Heat Mass Transfer, 47 (2011) 163–180.

    Article  Google Scholar 

  10. M. Rasti and J. H. Jeong, A generalized continuous empirical correlation for predicting refrigerant mass flow rates through adiabatic capillary tubes, Applied Thermal Engineering, 139 (2018) 47–60.

    Article  Google Scholar 

  11. W. Lee and J. H. Jeong, Evaluation of the constituent correlations for predicting the refrigerant flow characteristics in adiabatic helically coiled capillary tubes, Journal of Mechanical Science and Technology, 33 (2019) 2123–2136.

    Article  Google Scholar 

  12. W. Lee, J. Seo, J. Ko and J. H. Jeong, Non-equilibrium two-phase refrigerant flow at subcooled temperatures in an R600a refrigeration system, Int. Journal Refrigeration, 70 (2016) 148–156.

    Article  Google Scholar 

  13. Md. S. Alam and J. H. Jeong, Molecular dymanics simulations on homogeneous condensation of R600a refrigerant, Journal of Molecular Liquids, 261 (2018) 492–502.

    Article  Google Scholar 

  14. T. Keawkamrop and S. Wongwises, Effect of cycle frequency of a reciprocating magnetic refrigerator prototype on the temperature span and cooling capacity, Int. J. Air-Cond. Ref., 27 (2019) 1950002.

    Article  Google Scholar 

  15. C. C. Wang and K. Y. Chi, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data, Int. J. Heat Mass Trans., 43 (2000) 2681–2691.

    Article  Google Scholar 

  16. C. C. Wang, K. Y. Chi and C. J. Chang, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: correlation, Int. J. Heat Mass Trans., 43 (2000) 2693–2700.

    Article  Google Scholar 

  17. A. D. Sommers and A. M. Jacobi, Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation, Int. J. Refrigeration, 28 (2005) 1006–1017.

    Article  Google Scholar 

  18. M. Y. Lee, Y. H. Kim, H. S. Lee and Y. C. Kim, Air-side heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitches under frosting conditions, Int. J. Heat Mass Transfer, 53 (2010) 2655–2661.

    Article  Google Scholar 

  19. D. K. Yang, K. S. Lee and S. M. Song, Fin spacing optimization of a fin-tube heat exchangers under frosting conditions, Int. J. Heat Mass Transfer, 49 (2006) 2619–2625.

    Article  Google Scholar 

  20. S. H. Park, G. Y. Jo, J. H. Kim and J. B. Kim, Experimental study on heat transfer characteristics with number of fins in fin-tube heat exchangers for domestic refrigerator, Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 8 (2018) 589–597.

    Google Scholar 

  21. X. Liu, J. Yu and G. Yan, A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches, Int. J. Heat Mass Transfer, 100 (2016) 199–207.

    Article  Google Scholar 

  22. J. R. Barbosa, C. Melo, C. J. L. Hermes and P. J. Waltrich, A study of the air-side heat transfer and pressure drop characteristics of tube-fin ‘no-frost’ evaporators, Applied Energy, 86 (2009) 1484–1491.

    Article  Google Scholar 

  23. F. E. M. Saboya and E. M. Sparrow, Local and average transfer coefficient or one-row plate heat exchanger configurations, ASME J. Heat Transfer, Ser C, 96(3) (1974) 265–272.

    Article  Google Scholar 

  24. F. E. M. Saboya and E. M. Sparrow, Transfer characteristics of two row plate fin and tube heat exchanger configurations, Int. J. Heat Mass Transfer, 19 (1976) 41–49.

    Article  Google Scholar 

  25. F. E. M. Saboya and E. M. Sparrow, Experiments on a three-row fin and tube heat exchanger, ASME J. Heat Transfer, 98 (1976) 26–34.

    Article  Google Scholar 

  26. J. Y. Kim and T. H. Song, Effect of tube alignment on the-heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results, Int. J. Heat Mass Transfer, 46 (2003) 3051–3059.

    Article  Google Scholar 

  27. Y. H. Kim and Y.C. Kim, Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch, Int. J. Refrigeration, 28 (2005) 851–858.

    Article  Google Scholar 

  28. ASHRAE STANDARD 41.2-1987(RA92), Standard Methods for Laboratory Airflow Measurement, Based on AMCA standard ANSI/AMCA 210-85: laboratory methods of testing fans for rating, ASHRAE (1987).

  29. R. B. Abernathy, R. P. Benedict and R. B. Dowdell, ASME measurement uncertainty, ASME Journal of Fluids Engineering, 107 (1985) 161–164.

    Article  Google Scholar 

  30. S. S. Kutateladze, Handbook Heat Transfer & Hydraulic Resistances, Moscow, Energy & Nuclear Publishing Co. (1990).

    Google Scholar 

  31. L. M. Rozenfeld and A. G. Tkachev, Refrigerating Machines and Apparatus (1955).

  32. K. A. R. Ismail and C. S. Salinas, Modeling of frost formation over parallel cold plates, International Journal of Heat and Mass Transfer, 22 (1999) 425–441.

    Google Scholar 

  33. B. S. Petukhov, L. G. Genin and S. A. Kovalev, Teploobmen v Jadernych Energeticheskih Ustanovkx, Moskva, Atomizdat (1974).

    Google Scholar 

  34. G. K. Filonienko, Friction factor for turbulent pipe flow, Teploenergetika 1, 4 (1954) 40–44 (in Russian).

    Google Scholar 

  35. D. L. O’Neal and D. R. Tree, A review of frost formation in simple geometries, ASHRAER Transactions, 91 (1985) 267–281.

    Google Scholar 

  36. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 6th Ed., Hoboken: Wiley (2007) 490, 515, ISBN 978-0-471-45728-2.

    Google Scholar 

  37. V. A. Grigoriev and V. M. Zorin, Heat and Mass Transfer, Heat Engineering Experiment / Reference Book, Publ. “Energy”, Moscow (1982).

    Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Jeong.

Additional information

Bong-Jun Choi is an engineer of LG Electronics in Changwon, Korea. He received his bachelor’s and master’s degrees in mechanical engineering from Chung-Ang University in 1997 and 1999, respectively. His research interest is focused on heat exchangers and refrigeration systems.

Ji Hwan Jeong is a Professor of the School of Mechanical Engineering at Pusan National University in Busan, Korea. He received his bachelor’s degree in nuclear engineering from Seoul National University in 1988 and his master’s degree and Ph.D. in nuclear engineering from KAIST in 1990 and 1995, respectively. His research interests include heat transfer augmentation, heat exchangers, heat pumps, and nuclear thermal hydraulics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, BJ., Jeong, J.H. Modeling of air-side heat transfer and pressure drop of straight fin-tube no-frost evaporators for a household refrigerator. J Mech Sci Technol 34, 4773–4784 (2020). https://doi.org/10.1007/s12206-020-1034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-1034-2

Keywords

Navigation