Skip to main content
Log in

Using a DoE for a comprehensive analysis of the surface quality and cutting speed in WED-machined hadfield steel

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Wire electrical discharge machining (WEDM) is an unconventional machining method for manufacturing complex-shaped, precise components. Considering the high-energy intensity of the wire erosion process, its effective implementation requires a maximum cutting speed while still ensuring the best possible quality of the machined surface. For this latter purpose, we conducted a design of experiment (DoE) comprising 33 cycles and five input factors, or machine setting parameters: Gap voltage, pulse on time, pulse off time, discharge current, and wire feed. In this context, we statistically evaluated the cutting speed in Hadfield steel, as related to machine setting parameters, and also analyzed the machined surfaces of the applied samples. The actual experiment involved examining in detail the topography of the surfaces, using one contact and three non-contact profilers. The surface morphologies were observed via electron microscopy, and a lamella was prepared to facilitate the chemical composition analysis (EDX) with a transmission electron microscope (TEM). To study the subsurface layer and its defects, we produced metallographic specimens of all the samples; the items were observed by means of light and electron microscopes. With a maximum cutting speed the highest quality of the machined surface was achieved; however, the burned cavities can affect the life expectancy of the machined parts. The TEM lamella revealed that the individual alloying elements had segregated into regions, exhibiting high volumes of both manganese and the recast layer and, due to the use of WEDM, a manganese separation layer had formed at the boundary of the recast layer and the base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Jameson, Electrical Discharge Machining (2001) ISBN 08-726-3521-X.

    Google Scholar 

  2. K. H. Ho and S. T. Newman, State of the art electrical discharge machining (EDM), International J. of Machine Tools and Manufacture, 43 (13) (2003) 1287–1300.

    Article  Google Scholar 

  3. K. H. Ho, S. T. Newman, S. Rahimifard and R. D Allen, State of the art in wire electrical discharge machining (WEDM), International J. of Machine Tools and Manufacture, 44 (12) (2004) 1247–1259.

    Article  Google Scholar 

  4. W. A. Knight and G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, 3rd Ed., CRC Press (2005) ISBN 1574446592.

    Google Scholar 

  5. J. Kapoor, S. Singh and J. S. Khamba, High-performance wire electrodes for wire electrical-discharge machining-a review, Proceedings of the Institution of Mechanical Engineers, Part B: J. of Engineering Manufacture, 226 (11) (2012) 1757–1773.

    Article  Google Scholar 

  6. I. Maher, A. A. Sarhan and M. Hamdi, Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining, International J. of Advanced Manufacturing Technology, 76 (1–4) (2015) 329–351.

    Article  Google Scholar 

  7. A. K. Srivastava, S. K. Pal, P. Saha and K. Das, Experimental investigation of the effect of working parameters on wire offset in wire electrical discharge machining of hadfield manganese steel, J. of Surface Engineered Materials and Advanced Technology, 3 (4) (2013) 295.

    Article  Google Scholar 

  8. G. Ugrasen, H. V. Ravindra, G. N. Prakash and R. Keshavamurthy, Process optimization and estimation of machining performances using artificial neural network in wire EDM, Procedia Materials Science, 6 (2014) 1752–1760.

    Article  Google Scholar 

  9. K. Kanlayasiri and P. Jattakul, Simultaneous optimization of dimensional accuracy and surface roughness for finishing cut of wire-EDMed K460 tool steel, Precision Engineering, 37 (3) (2013) 556–561.

    Article  Google Scholar 

  10. P. Saha, D. Tarafdar, S. K. Pal, P. Saha, A. K. Srivastava and K. Das, Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through neuro-genetic technique, Applied Soft Computing, 13 (4) (2013) 2065–2074.

    Article  Google Scholar 

  11. A. Majumder, A. Das and P. K. Das, A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel, Neural Computing and Applications (2016) 1–13.

    Google Scholar 

  12. A. K. Dhakad and J. Vimal, Multi responses optimization of wire EDM process parameters using Taguchi approach coupled with principal component analysis methodology, International J. of Engineering, Science and Technology, 9 (2) (2017) 61–74.

    Article  Google Scholar 

  13. S. Chandgude, P. Pawar and M. Sadaiah, Process parameter optimization based on principal components analysis during machining of hardened steel, International J. of Industrial Engineering Computations, 6 (3) (2015) 379–390.

    Article  Google Scholar 

  14. C. A. Huang, F. Y. Hsu and S. J. Yao, Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM), Materials Science and Engineering: A, 371 (1) (2004) 119–126.

    Article  Google Scholar 

  15. R. Bobbili, V. Madhu and A. K. Gogia, Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel, Materials and Manufacturing Processes, 28 (4) (2013) 364–368.

    Article  Google Scholar 

  16. K. Mouralova, R. Matousek, J. Kovar, J. Mach, L. Klakurkova and J. Bednar, Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel, Measurement, 94 (2016) 771–779.

    Article  Google Scholar 

  17. K. Mouralova, J. Kovar, L. Klakurkova, J. Bednar, L. Benes and R. Zahradnicek, Analysis of surface morphology and topography of pure aluminium machined using WEDM, Measurement, 114 (2018) 169–176.

    Article  Google Scholar 

  18. K. Mouralova, Kovar, L. Klakurkova, T. Prokes and M. Horynova, Comparison of morphology and topography of surfaces of WEDM machined structural materials, Measurement, 104 (2017) 12–20.

    Article  Google Scholar 

  19. A. Pribulova, J. Babic and D. Baricova, Influence of hadfield’s steel chemical composition on its mechanical properties, Chem. Listy, 105 (2011) 430–432.

    Google Scholar 

  20. A. Acton, Issues in Metal Research, 2013 Edition (2013) ISBN 978-1-490-11024-0.

    Google Scholar 

  21. K. Mouralova, Modernítechnologiedrátovéhoelektroerozivníhořezáníkovovýchslitin, Thesis, Brno: CERM (2015) ISBN 80-214-2131-2.

    Google Scholar 

  22. D. C. Montgomery, Design and Analysis of Experiments, Eighth edition (2013) ISBN 978-1118146927-X.

    Google Scholar 

  23. X. J. Jiang and D. J. Whitehouse, Technological shifts in surface metrology, CIRP Annals-Manufacturing Technology, 61 (2) (2012) 815–836.

    Article  Google Scholar 

  24. M. Harcarik and R. Jankovych, Relationship between values of profile and areal surface texture parameters, MM Science J., 5 (2016) 1659–1662.

    Article  Google Scholar 

  25. T. Ficker and D. Martišek, Three dimensional reconstructions of solid surfaces using conventional microscopes, Scanning, 38 (1) (2016) 21–35.

    Article  Google Scholar 

  26. Geometrical product specifications (GPS) -Surface texture: Areal -Part 2: Terms, definitions and surface texture parameters, Geneva: International Organization for Standardization, ISO 25178-2 (2012).

  27. Geometrical product specifications (GPS) -Surface texture: Profile method -Terms, definitions and surface texture parameters, Geneva: International Organization for Standardization, ISO 4287 (1997).

  28. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa and H. H. Soliman, Roughness parameters, J. of Materials Processing Technology, 123 (1) (2002) 133–145.

    Article  Google Scholar 

  29. B. C. MacDonald, Basic components and elements of surface topography (2002) [online] www.bcmac.com/pdf_files/surface%20finish%20101.pdf.

    Google Scholar 

  30. K. Mouralova, J. Kovar, L. Klakurkova, P. Blazik, M. Kalivoda and P. Kousal, Analysis of surface and subsurface layers after WEDM for Ti-6Al-4V with heat treatment, Measurement, 116 (2018) 556–564.

    Article  Google Scholar 

  31. K. Mouralova, R. Zahradnicek and P. Houska, Evaluation of surface quality of X210CR12 steel for forming tools machined by WEDM, MM Science J. (2016) 1366–1369.

    Google Scholar 

  32. C. A. Huang, F. Y. Hsu and S. J. Yao, Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM), Materials Science and Engineering: A, 371 (1) (2004) 119–126.

    Article  Google Scholar 

  33. A. Hasçalýk and U. Çaydaş, Experimental study of wire electrical discharge machining of AISI D5 tool steel, J. of Material Processing Technology, 148 (3) (2004) 362–367.

    Article  Google Scholar 

  34. G. B. Osorio, H. S. Sthepa, J. Ramos, J. F. Durán and G. P. Alcázar, Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel, Hyperfine Interactions, 238 (1) (2017) 56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mouralova.

Additional information

Recommended by Associate Editor Wonkyun Lee

Katerina Mouralova received the Bc. and Ing. in Mechanical Engineering from Brno University of Technology, Czech Republic, in 2007 and 2010, respectively, and the Ph.D. in 2015. Her main research field is wire electrical discharge machining.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouralova, K., Benes, L., Bednar, J. et al. Using a DoE for a comprehensive analysis of the surface quality and cutting speed in WED-machined hadfield steel. J Mech Sci Technol 33, 2371–2386 (2019). https://doi.org/10.1007/s12206-019-0437-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-0437-4

Keywords

Navigation