Skip to main content
Log in

Thermal performance criterion for nanofluids in laminar flow regime

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper theoretically presents a thermal performance criterion for nanofluids under the laminar flow condition, in which the nanofluids flow through a simple circular tube. The criterion is also defined by the fixed pumping power, temperature difference between the inlet and outlet, and surface area of the simple tube. In order to present the Figure of merit (FOM) of water-based nanofluids containing commercial Carbon nanotubes (CNTs) from the CNT manufacturers using the criterion, previous experimental data of effective properties such as thermal conductivity and viscosity are classified by the CNT manufacturers. Based on the results, we determine which water-based CNT nanofluids have better thermal performance to predict the feasibility of applying nanofluids in a practical system. Although this study is limited in its ability to clearly assess the thermal performance of CNT nanofluids, the present criterion suggests a minimum guideline for CNT nanofluids in laminar flow regime can be extrapolated to thermal management devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-H. Lee, S.-H. Lee, C. J. Choi, S. P. Jang and S. U. S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids, International Journal of Micro-Nano Scale Transport, 1 (4) (2010) 269–322.

    Article  Google Scholar 

  2. H. A. Mohammed, G. Bhaskarana, N. H. Shuaiba and R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renewable and Sustainable Energy Reviews, 15 (3) (2011) 1502–1512.

    Article  Google Scholar 

  3. G. Huminic and A. Huminic, Application of nanofluids in heat exchangers: A review, Renewable and Sustainable Energy Reviews, 16 (8) (2012) 5625–5638.

    Article  MATH  Google Scholar 

  4. O. A. Alawi, N. A. C. Sidik, H. A. Mohammed and S. Syahrullail, Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review, International Communications in Heat and Mass Transfer, 56 (2014) 50–62.

    Article  Google Scholar 

  5. N. A. C. Sidik, M. N. A. W. M. Yazid and R. Mamat, A review on the application of nanofluids in vehicle engine cooling system, International Communications in Heat and Mass Transfer, 68 (2015) 85–90.

    Article  Google Scholar 

  6. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop and S. Wongwises, A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer, 57 (2) (2013) 582–594.

    Article  Google Scholar 

  7. M. Sajid, Hossain, R. Saidur, M. F. M. Sabri, Z. Said and S. Hassani, Spotlight on available optical properties and models of nanofluids: A review, Renewable and Sustainable Energy Reviews, 43 (2015) 750–762.

    Article  Google Scholar 

  8. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (6348) (1991) 56–58.

    Article  Google Scholar 

  9. H. Xie and L. Chen, Review on the preparation and thermal performances of carbon nanotube contained nanofluids, Journal of Chemical & Engineering Data, 56 (4) (2011) 1030–1041.

    Article  Google Scholar 

  10. S. M. S. Murshed and C. A. N. Castro, Superior thermal features of carbon nanotubes-based nanofluids -A review, Renewable and Sustainable Energy Reviews, 37 (2014) 155–167.

    Article  Google Scholar 

  11. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79 (14) (2001) 2252–2254.

    Article  Google Scholar 

  12. S. Shaikh, K. Lafdi and R. Ponnappan, Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study, Journal of Applied Physics, 101 (6) (2007) 064302.

    Article  Google Scholar 

  13. M. S. Liu, M. Lin, I. T. Huang and C. C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32 (9) (2005) 1202–1210.

    Article  Google Scholar 

  14. H. Xie, H. Lee, W. Youn and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94 (8) (2003) 4967–4971.

    Article  Google Scholar 

  15. L. Chen, H. Xie, Y. Li and W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochimica Acta, 477 (1–2) (2008) 21–24.

    Article  Google Scholar 

  16. J. Wang, J. Zhu, X. Zhang and Y. Chen, Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Experimental Thermal Fluid Science, 44 (2013) 716–721.

    Article  Google Scholar 

  17. R. Prasher, D. Song, J. Wang and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, 89 (13) (2006) 133108.

    Article  Google Scholar 

  18. J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley and G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, Journal of Applied Physics, 103 (7) (2008) 074301.

    Article  Google Scholar 

  19. E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh and J. L. Routbort, Particle size and interfacial effects on thermo-physical and heat transfer characteristics of waterbased α-SiC nanofluids, Nanotechnology, 21 (21) (2010) 215703.

    Article  Google Scholar 

  20. W. Tesfai, P. K. Singh, S. J. S. Masharqa, M. Chiesa and Y. Shatilla, Effect of temperature on turbulent and laminar flow efficacy analysis of nanofluids, Journal of Applied Physics, 111 (6) (2012) 064319.

    Article  Google Scholar 

  21. W. Yu, D. M. France, E. V. Timofeeva, D. Singh and J. L. Routbort, Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, Applied Physics Letters, 96 (21) (2010) 213109.

    Article  Google Scholar 

  22. F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, Introduction to Heat Transfer, Fifth Ed., John Wiley & Sons, Hoboken, USA (2007).

    Google Scholar 

  23. T. X. Phuoc, M. Massoudi and R.-H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, International Journal of Thermal Sciences, 50 (1) (2011) 12–18.

    Article  Google Scholar 

  24. V. Kumarensan, R. Velraj and S. K. Das, Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger, International Journal of Refrigeration, 35 (8) (2012) 2287–2296.

    Article  Google Scholar 

  25. V. Kumaresan and R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids, Thermochimica Acta, 545 (2012) 180–186.

    Article  Google Scholar 

  26. L. Chen, H. Xie, Y. Li and W. Yu, Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330 (2–3) (2008) 176–179.

    Article  Google Scholar 

  27. L. Chen and H. Xie, Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352 (1–3) (2009) 136–140.

    Article  Google Scholar 

  28. L. Chen and H. Xie, Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant, Thermochimica Acta, 506 (1–2) (2010) 62–66.

    Article  Google Scholar 

  29. Y. Yang, E. A. Grulke, Z. G. Zhang and G. Wu, Thermal and rheological properties of carbon nanotube-in-oil dispersions, Journal of Applied Physics, 99 (11) (2006) 114307.

    Article  Google Scholar 

  30. P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kesselr and K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, 52 (21–22) (2009) 5090–5101.

    Article  Google Scholar 

  31. Y. J. Kim, H. Ma and Q. Yu, Plasma nanocoated carbon nanotubes for heat transfer nanofluids, Nanotechnology, 21 (29) (2010) 295703.

    Article  Google Scholar 

  32. G. H. Ko, K. Heo, K. Lee, D. S. Kim, C. Kim, Y. Sohn and M. Choi, An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, International Journal of Heat and Mass Transfer, 50 (23–24) (2007) 4749–4753.

    Article  Google Scholar 

  33. M. J. Assael, C.-F. Chen, I. Metaxa and W. A. Wakelham, Thermal conductivity of suspensions of carbon nanotubes in water, International Journal of Thermophysics, 25 (4) (2004) 971–985.

    Article  Google Scholar 

  34. M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos and C. Lioutas, Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants, International Journal of Thermophysics, 26 (3) (2005) 647–664.

    Article  Google Scholar 

  35. F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi and W. Ma, Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene, Nanoscale Research Letters, 7 (1) (2012) 314.

    Article  Google Scholar 

  36. A. S. Cherkasova and J. W. Shan, Particle aspect-ratio and agglomeration-state effects on the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes, ASME Transactions of Journal of Heat Transfer, 132 (8) (2010) 082402.

    Article  Google Scholar 

  37. Z. Talaei, A. R. Mahjoub, A. M. Rashidi, A. Amrollahi and M. E. Meibodi, The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media, International Communications in Heat and Mass Transfer, 38 (4) (2011) 513–517.

    Article  Google Scholar 

  38. L. Liao and Z.-H. Liu, Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube, Heat and Mass Transfer, 45 (8) (2009) 1129–1136.

    Article  Google Scholar 

  39. L. Chen and H. Xie, Surfactant-free nanofluids containing double-and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction, Thermochimica Acta, 497 (1–2) (2010) 67–71.

    Google Scholar 

  40. B. Wang, X. Wang, W. Lou and J. Hao, Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes, Journal of Physical Chemistry C, 114 (19) (2010) 8749–8754.

    Article  Google Scholar 

  41. B. Ruan and A. M. Jacobi, Heat transfer characteristics of multiwall carbon nanotube suspensions (MWCNT nanofluids) in intertube falling-film flow, International Journal of Heat and Mass Transfer, 55 (11–12) (2012) 3186–3195.

    Article  Google Scholar 

  42. D. Wen and Y. Ding, Effective Thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), Journal of Thermophysics and Heat Transfer, 18 (4) (2004) 481–485.

    Article  Google Scholar 

  43. Y. Ding, H. Alias, D. Wen and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat Mass Transfer, 49 (1–2) (2006) 240–250.

    Article  Google Scholar 

  44. J. Nanda, C. Maranville, S. C. Bollin, D. Sawall, H. Ohtani, J. T. Remillard and J. M. Ginder, Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects, Journal of Physical Chemistry C, 112 (3) (2008) 654–658.

    Article  Google Scholar 

  45. A. Amrollahi, A. A. Hamidi and A. M. Rashidi, The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid), Nanotechnology, 19 (31) (2008) 315701.

    Article  Google Scholar 

  46. T. Y. Choi, M. H. Maneshian, B. Kang, W. S. Chang, C. S. Han and D. Poulikakos, Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-ω method, Nanotechnology, 20 (31) (2009) 315706.

    Article  Google Scholar 

  47. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 49 (8) (2011) 2581–2602.

    Article  Google Scholar 

  48. G. Gao, T. Cagin and W. A. Goddard III, Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes (SWNT), Nanotechnology, 9 (3) (1998) 184–191.

    Article  Google Scholar 

  49. M. M. Maricq and N. Xu, The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust, Journal of Aerosol Science, 35 (10) (2004) 1251–1274.

    Article  Google Scholar 

  50. W. Liu, T. Zhao, Y. Zhang, H. Wang and M. Yu, The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4], Journal of Solution Chemistry, 35 (10) (2006) 1337–1346.

    Article  Google Scholar 

  51. W. Fan, Q. Zhou, J. Sun and S. Zhang, Density, excess molar volume, and viscosity for the methyl methacrylate + 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure, Journal of Chemical & Engineering Data, 54 (8) (2009) 2307–2311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Pil Jang.

Additional information

Recommended by Associate Editor Youngsuk Nam

Seung-Hyun Lee received a Ph.D. from Korea Aerospace University in 2015. He is currently a Research Engineer of Koreanair. His research interests include conductive heat transfer characteristics of nanofluids and solar thermal applications of nanofluids.

Hyun Jin Kim received a Ph.D. from Korea Aerospace University in 2015. He is currently a Research Engineer of Defense Agency for Technology and Quality. His research interests include convective heat transfer phenomena of nanofluids, nanosolder for melting point depression, quality management and RAM.

Seok Pil Jang received a Ph.D. from KAIST (Korean Advanced Institute of Science and Technology), 2003 in South Korea and worked at Energy Technology Division of Argonne National Lab (ANL) in Chicago, Illinois until he joined Korea Aerospace University in 2004. Also, he was visiting scholar at ANL from 2004 to 2006 and was Visiting Professor at UIC (University of Illinois at Chicago) from 2010 to 2011. He have worked as Professor at Korea Aerospace University since 2004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Kim, H.J. & Jang, S.P. Thermal performance criterion for nanofluids in laminar flow regime. J Mech Sci Technol 31, 975–983 (2017). https://doi.org/10.1007/s12206-017-0150-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0150-0

Keywords

Navigation