Skip to main content
Log in

Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel’s to Cassie’s regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Shirtcliffe, G. McHale, S. Atherton and M. Newton, An introduction to superhydrophobicity, Adv. Colloid. Interface. Sci., 161 (2010) 124–138.

    Article  Google Scholar 

  2. C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 79 (1997) 667–677.

    Article  Google Scholar 

  3. P. Wagner, R. Furstner, W. Barthlott and C. Neinhuis, Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot., 54 (2003) 1295–1303.

    Article  Google Scholar 

  4. S. Shibuichi, T. Onda, N. Satoh and K. Tsujii, Super waterrepellent surfaces resulting from fractal structure, J. Phys. Chem., 100 (1996) 19512–19517.

    Article  Google Scholar 

  5. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir, 16 (2000) 5754–5760.

    Article  Google Scholar 

  6. J. Kijlstra, K. Reihs and A. Klami, Roughness and topology of ultra-hydrophobic surfaces, Colloids. Surf. A., 206 (2002) 521–529.

    Article  Google Scholar 

  7. T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London., 95 (1805) 65–87.

    Article  Google Scholar 

  8. A. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944) 546–551.

    Article  Google Scholar 

  9. R. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936) 988–994.

    Article  Google Scholar 

  10. B. Bhushan, K. Koch and Y. Jung, Biomimetic hierarchical structure for self-cleaning, Appl. Phys. Lett., 93 (2008) 093101.

    Article  Google Scholar 

  11. B. Bhushan, K. Koch and Y. Jung, Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning, Ultramicroscopy, 109 (2009) 1029–1034.

    Article  Google Scholar 

  12. M. Wang, N. Raghunathan and B. Ziaie, A A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces, Langmuir, 23 (2007) 2300–2303.

    Article  Google Scholar 

  13. R. Furstner and W. Barthlott, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21 (2005) 956–961.

    Article  Google Scholar 

  14. Q. Xie, G. Fan, N. Zhao, X. Guo, J. Xu, J. Dong, L. Zhang, Y. Zhang and C. Han, Facile creation of a bionic superhydrophobic block copolymer surface, Adv. Mater., 16 (2004) 1830–1833.

    Article  Google Scholar 

  15. Y. Yan, N. Gao and W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Adv. Colloid. Interface. Sci., 169 (2011) 80–105.

    Article  Google Scholar 

  16. Y. Kim, W. Choi and J. Lee, Water droplet properties on periodically structured superhydrophobic surfaces: a lattice Boltzmann approach to multiphase flows with high water/air density ratio, Microfluid Nanofluid, 10 (2011) 173–185.

    Article  Google Scholar 

  17. N. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir, 20 (2004) 7097–7102.

    Article  Google Scholar 

  18. Z. Pawlak, W. Urbaniak and A. Oloyede, The relationship between friction and wettability in aqueous environment, Wear, 271 (2011) 1745–1749.

    Article  Google Scholar 

  19. R. Li, A. Alizadeh and W. Shang, Adhesion of liquid droplets to rough surfaces, Phys. Rev. E., 82 (2010) 041608.

    Article  Google Scholar 

  20. A. Gunstensen and D. Rothman, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A., 43 (1991) 4320–4327.

    Article  Google Scholar 

  21. X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E., 47 (1993) 1815–1819.

    Article  Google Scholar 

  22. M. Swift, W. Osborn and J. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75 (1995) 830–833.

    Article  Google Scholar 

  23. X. He, S. Chen and R. Zhang, A A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152 (1999) 642–663.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi and F. Toschi, Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle, Phys. Rev. E., 74 (2006) 021509.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Pooley, H. Kusumanntmaja and J. Yeomans, Contact line dynamics in binary lattice Boltzmann simulations, Phys. Rev. E., 78 (2008) 056709.

    Article  Google Scholar 

  26. B. Dong, Y. Yan, W. Li and Y. Song, Simulation of the influence of surface wettability on viscous fingering phenomenon in porous media, J. Bionic Eng., 7 (2010) 267–275.

    Article  Google Scholar 

  27. S. Shen, F. Bi and Y. Guo, Simulation of droplets Impact on curved surfaces with lattice Boltzmann method, Int. J. Heat Mass Transf., 55 (2012) 6938–6943.

    Article  Google Scholar 

  28. L. Wang, H. Huang and X. Lu, Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method, Phys. Rev. E., 87 (2013) 013301.

    Article  Google Scholar 

  29. T. Inamuro, T. Ogata, S. Tajima and N. Konishi, A A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198 (2004) 628–644.

    Article  MATH  Google Scholar 

  30. Y. Yan and Y. Zu, A A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio, J. Comput. Phys., 227 (2007) 763–775.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Tanaka, Y. Washio, M. Yoshino and T. Hirata, Numerical simulation of dynamic behavior of droplet on solid surface by two-phase lattice Boltzmann method, Comput. Fluids., 40 (2011) 68–78.

    Article  MATH  Google Scholar 

  32. Y. Zu, Y. Yan, J. Li and Z. Han, Wetting behaviours of a single droplet on biomimetic micro structured surfaces, J. Bionic. Eng., 7 (2010) 191–198.

    Article  Google Scholar 

  33. Y. Zu and Y. Yan, Lattice Boltzmann method for modeling droplets on chemically heterogeneous and microstructured surfaces with large liquid-gas density ratio, IMA. J. Appl. Math., 76 (2011) 743–760.

    Article  MathSciNet  Google Scholar 

  34. L. Barbieri, E. Wagner and P. Hoffmann, Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles, Langmuir, 23 (2007) 1723–1734.

    Article  Google Scholar 

  35. J. Lee, J. Moon and J. Lee, Study of transporting of droplets on heterogeneous surface structure using the lattice Boltzmann approach, Appl. Therm. Eng., 72 (2014) 104–113.

    Article  Google Scholar 

  36. N. Adam and H. Livingston, Contact angles and work of adhesion, Nature, 182 (1958) 128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Sang Lee.

Additional information

Recommended by Associate Editor Suk Goo Yoon

Joon Sang Lee is an Associate Professor of School of Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea. He received his doctor degree in Mechanical Engineering from Iowa State University. His research interests is mainly on computational fluid dynamics, including biomechanics and hemodynamics and multi-scale fluid dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S., Lee, J.S. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces. J Mech Sci Technol 30, 3741–3747 (2016). https://doi.org/10.1007/s12206-016-0736-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0736-y

Keywords

Navigation