Skip to main content
Log in

Modeling the Wettability of Microstructured Hydrophobic Surface Using Multiple-relaxation-time Lattice Boltzmann Method

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Wetting properties are significant for a hydrophobic surface and normally characterized by the equilibrium contact angle. In this manuscript, a mesoscopic method based on multiphase multiple-relaxation-time Lattice Boltzmann method has been presented and applied to simulate the contact angle at three-phase interfaces of a solid surface with micro-pillar structure. The influence of different parameters including pillar height, pillar width, inter-pillar spacing, intrinsic contact angle and the volume of the liquid drop on the equilibrium contact angle has been comprehensively investigated. The effect of geometry parameters of the micro-pillar structure on the wetting transition from Cassie–Baxter state to Wenzel state has also been studied. The results indicate that when the inter-pillar spacing is less than a certain value or the pillar height is greater than a certain value, the contact form between the droplet and the surface satisfies the Cassie–Baxter state. When the contact form satisfies the Cassie–Baxter state, the contact angle gradually increases with the increase of the inter-pillar spacing; the contact angle does not change significantly with the pillar height; the contact angle gradually decreases and approaches the intrinsic contact angle with the pillar width increases. Moreover, the contact angle increases with the increase of the intrinsic contact angle, and the contact angle is not sensitive to the change of droplet volume when the droplet volume is between 0.5 and10 μl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fukagata, K., Kasagi, N., & Koumoutsakos, P. (2006). A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Physics of Fluids, 18, 51701–51703.

    Article  Google Scholar 

  2. Byun, D., Hong, J., Saputra, J. H. K., Lee, Y. J., Park, H. C., Byun, B., & Lukes, J. R. (2009). Wetting characteristics of insect wing surfaces. Journal of Bionic Engineering, 6, 63–70.

    Article  Google Scholar 

  3. Dong, B. B., Wang, F. H., Abadikhah, H., Hao, L. Y., Xu, X., Khan, S. A., Wang, G., & Agathopoulos, S. (2019). Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation. ACS Applied Materials and Interfaces, 11, 42801–42807.

    Article  Google Scholar 

  4. Wang, X., Xu, B., Chen, Z. Q., Yang, Y., & Cao, Q. (2021). Lattice Boltzmann simulation of dropwise condensation on the microstructured surfaces with different wettability and morphologies. International Journal of Thermal Sciences, 160, 106643.

    Article  Google Scholar 

  5. Li, L., & Yuan, M. S. (2011). Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations. Acta Mechanica Sinica, 27, 200–207.

    Article  MATH  Google Scholar 

  6. Zhang, B., Li, Q. B., Niu, X. J., Yang, L., Hu, Y., & Zhang, J. L. (2021). Influence of a novel hydrophobic agent on freeze-thaw resistance and microstructure of concrete. Construction and Building Materials, 269, 1–10.

    Google Scholar 

  7. Marmur, A., Volpe, C. D., Siboni, S., Amirfazli, A., & Drelich, J. W. (2017). Contact angles and wettability: Towards common and accurate terminology. Surface Innovations, 5, 3–8.

    Article  Google Scholar 

  8. Pereira, P. M. M., Moita, A. S., Monteiro, G. A., & Prazeres, D. M. F. (2014). Characterization of the topography and wettability of English weed leaves and biomimetic replicas. Journal of Bionic Engineering, 11, 346–359.

    Article  Google Scholar 

  9. Feng, L., Li, S. H., Li, Y. S., Li, H. J., Zhang, L. J., Zhai, J., Song, Y. L., Liu, B. Q., Jiang, L., & Zhu, D. B. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14, 1857–1860.

    Article  Google Scholar 

  10. Lian, F., Tan, J. Z., & Zhang, H. C. (2014). The impact of the surface pattern on its wettability and antifouling performance. Journal of Functional Materials, 45, 2105–2109.

    Google Scholar 

  11. Yagub, A., Farhat, H., Kondaraju, S., & Singh, T. (2015). A lattice Boltzmann model for substrates with regularly structured surface roughness. Journal of Computational Physics, 301, 402–414.

    Article  MathSciNet  MATH  Google Scholar 

  12. Nakae, H., Yoshida, M., & Yokota, M. (2005). Effects of roughness pitch of surfaces on their wettability. Journal of Materials Science, 40, 2287–2293.

    Article  Google Scholar 

  13. Öner, D., & McCarthy, T. J. (2000). Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 16, 7777–7782.

    Article  Google Scholar 

  14. Pan, G., Huang, Q. G., Hu, H. B., & Liu, Z. Y. (2010). Wettability of superhydrophobic surface through tuning microcosmic structure. Polymer Materials Science and Engineering, 26, 163–166.

    Google Scholar 

  15. Huang, Q. G., & Pan, G. (2015). Numerical simulation on wettability of hydrophobic surfaces based on lattice Boltzmann method. Journal of Functional Materials, 46, 10023–10028.

    Google Scholar 

  16. Venkateshan, D. G., & Tafreshi, H. V. (2018). Modelling droplet sliding angle on hydrophobic wire screens. Colloids and Surfaces A, 538, 310–319.

    Article  Google Scholar 

  17. Khojasteh, D., Manshadi, M. K. D., Mousavi, S. M., Sotoudeh, F., Kamali, R., & Bordbar, A. (2020). Electrically modulated droplet impingement onto hydrophilic and (super) hydrophobic solid surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 153.

    Article  Google Scholar 

  18. Jamali, M., Moghadam, A., Tafreshi, H. V., & Pourdeyhimi, B. (2018). Droplet adhesion to hydrophobic fibrous surfaces. Applied Surface Science, 456, 626–636.

    Article  Google Scholar 

  19. Hosseini, S., Savaloni, H., & Shahraki, M. G. (2019). Influence of surface morphology and nano-structure on hydrophobicity: A molecular dynamics approach. Applied Surface Science, 485, 536–546.

    Article  Google Scholar 

  20. Lia, H., & Zhang, K. (2019). Dynamic behavior of water droplets impacting on the superhydrophobic surface: Both experimental study and molecular dynamics simulation study. Applied Surface Science, 498, 143793.

    Article  Google Scholar 

  21. Ambrosia, M. S., Ha, M. Y., & Balachandar, S. (2013). The effect of pillar surface fraction and pillar height on contact angles using molecular dynamics. Applied Surface Science, 282, 211–216.

    Article  Google Scholar 

  22. Ahmad, S., Zhao, J. Y., Shahzad, A., Qadri, M. N. M., & Tang, H. (2021). Droplet impact on nano-textured bumps: Topology effects. Computers and Fluids, 218, 104844.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X., Lin, D. J., Wang, Y. B., Gao, S. R., Yang, Y. R., & Wang, X. D. (2020). Rebound dynamics of two droplets simultaneously impacting a flat superhydrophobic surface. American Institute of Chemical Engineers, 66, e16647.

    Google Scholar 

  24. Pravinraj, T., & Patrikar, R. (2017). Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method. Applied Surface Science, 409, 214–222.

    Article  Google Scholar 

  25. Jansen, H. P., Sotthewes, K., Zandvliet, H. J. W., & Kooij, E. S. (2016). Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates. Applied Surface Science, 361, 122–132.

    Article  Google Scholar 

  26. Premnath, K. N., & Banerjee, S. (2011). On the three-dimensional central moment lattice Boltzmann method. Journal of Statistical Physics, 143, 747–794.

    Article  MathSciNet  MATH  Google Scholar 

  27. D’Humières, D., Krafczyk, M., Lallemand, P., & Luo, L. S. (2002). Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 360, 437–451.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lallemand, P., & Luo, L. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61, 6546–6562.

    Article  MathSciNet  Google Scholar 

  29. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988–994.

    Article  Google Scholar 

  30. Wenzel, R. N. (1949). Surface roughness and contact angle. The Journal of Physical and Colloid Chemistry, 53, 1466–1467.

    Article  Google Scholar 

  31. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Article  Google Scholar 

  32. Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.

    Article  Google Scholar 

  33. Wang, H. B., Kong, Y. X., Cheng, S., & You, H. F. (2020). Effect of micro/nano-scale structures on wettability of surface based on LBM. Journal of Materials Science and Engineering, 38, 245–249.

    Google Scholar 

  34. Li, Q., Luo, K. H., & Li, X. J. (2013). Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Physical Review E, 87, 53301.

    Article  Google Scholar 

  35. Guo, Z. L., & Zheng, C. G. (2008). Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer. International Journal of Computational Fluid Dynamics, 22, 465–473.

    Article  MATH  Google Scholar 

  36. Li, Q., He, Y. L., Tang, G. H., & Tao, W. Q. (2010). Improved axisymmetric lattice Boltzmann scheme. Physical Review E, 81, 56707.

    Article  Google Scholar 

  37. Shan, X. W. (2008). Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Physical Review E, 77, 066702.

    Article  Google Scholar 

  38. Yu, Z., & Fan, L. S. (2010). Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 82, 46708.

    Article  Google Scholar 

  39. Guo, Z. L., Zheng, C. G., & Shi, B. C. (2002). Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65, 46308.

    Article  Google Scholar 

  40. Yan, Y. Y. (2009). Physical and numerical modelling of biomimetic approaches of natural hydrophobic surfaces. Chinese Science Bulletin, 54, 541–548.

    Article  Google Scholar 

  41. Stalder, A. F., Kulik, G., Sage, D., Barbieri, L., & Hoffmann, P. (2006). A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286, 92–103.

    Article  Google Scholar 

  42. Hasan, M., Warzywoda, J., & Kumar, G. (2018). Decoupling the effects of surface texture and chemistry on the wetting of metallic glasses. Applied Surface Science, 447, 355–362.

    Article  Google Scholar 

  43. Zhao, T. Y., & Jiang, L. (2018). Contact angle measurement of natural materials. Colloids and Surfaces B: Biointerfaces, 161, 324–330.

    Article  Google Scholar 

  44. He, Y., Jiang, C. Y., Wang, S. K., Yin, H. X., & Yuan, W. Z. (2013). Control wetting state transition by microrod geometry. Applied Surface Science, 285, 682–687.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant no. 12172377 and Grant no. 11772351) and the Open Research Fund of Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (Grant no. 202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuchao Qiu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Qiu, L. Modeling the Wettability of Microstructured Hydrophobic Surface Using Multiple-relaxation-time Lattice Boltzmann Method. J Bionic Eng 19, 1460–1471 (2022). https://doi.org/10.1007/s42235-022-00204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00204-1

Keywords

Navigation