Skip to main content
Log in

Numerical investigation of the effects of geometric parameters on transverse motion with slanted-groove micro-mixers

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We investigated hydrodynamic phenomena inside several passive microfluidic mixers using a Lattice Boltzmann method (LBM) based on particle mesoscopic kinetic equations. Mixing processes were simulated in a Slanted grooved micro-mixer (SGM), a Staggered herringbone grooved micro-mixer (SHM), and a Bi-layered staggered herringbone grooved micro-mixer (BSHM). Then, the effects of six geometric mixer parameters (i.e., groove height to channel height ratio, groove width to groove pitch length ratio, groove pitch to groove height ratio, groove intersection angle, herringbone groove asymmetric ratio and bi-layered groove asymmetric ratio) on mixing were investigated using computed cross-flow velocity and helicity density distributions in the flow cross-section. We demonstrated that helicity density provides sufficient information to analyze micro helical motion within a micro-mixer, allowing for micro-mixer design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Hayes, J. Allen, C. Compton, G. Gustavsen, D. G. B. Leonard, R. McCormack, L. Newcomer, K. Pothier, D. Ransohoff, R. L. Schilsky, E. Sigal, S. E. Taube and S. R. Tunis, Breaking a Vicious Cycle, Sci. Transl. Med., 5 (196) (2013).

    Google Scholar 

  2. M. Wendel, L. Bazhenova, R. Boshuizen, A. Kolatkar, M. Honnatti, E. H. Cho, D. Marrinucci, A. Sandhu, A. Perricone, P. Thistlethwaite, K. Bethel, J. Nieva, M. van den Heuvel and P. Kuhn, Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: glimpse into lung cancer biology, Phys. Biol., 9 (1) (2012) 016005.

    Article  Google Scholar 

  3. D. C. Danila, M. Fleisher and H. I. Scher, Circulating Tumor Cells as Biomarkers in Prostate Cancer, Clin Cancer Res., 17 (2011) 3903.

    Article  Google Scholar 

  4. J. M. Lang, B. P. Casavant and D. J. Beebe, Circulating Tumor Cells: Getting More from Less, Sci. Transl. Med., 4 (141) (2012).

    Google Scholar 

  5. Z. Liu, F. Huang, J. Du, W. Shu, H. Feng, X. Xu and Y. Chen, Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure, Biomicrofluidics, 7 (1) (2013) 011801.

    Article  Google Scholar 

  6. J. Sun, C. Liu, M. Li, J. Wang, Y. Xianyu, G. Hu and X. Jiang, Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels, Biomicrofluidics, 7 (1) (2013) 011802.

    Article  Google Scholar 

  7. M. Alshareef, N. Metrakos, E. J. Perez, F. Azer, F. Yang, X. Yang and G. Wang, Separation of tumor cells with dielectrophoresis-based microfluidic chip, Biomicrofluidics, 7 (1) (2013) 011803.

    Article  Google Scholar 

  8. R. Manzoor, S. Ul. Islam, W. S. Abbasi and S. Parveen, Variation of wake patterns and force coefficients of the flow past square bodies aligned inline, Journal of Mechanical Science and Technology, 30 (4) (2016) 1691.

    Article  Google Scholar 

  9. I. Cima, C. W. Yee, F. S. Iliescu, W. M. Phyo, K. H. Lim, C. Iliescu and M. H. Tan, Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives, Biomicrofluidics, 7 (1) (2013) 011810.

    Article  Google Scholar 

  10. A. Kumar and A. Srivastava, Nat Protoc, Cell separation using cryogel-based affinity chromatography, Nature Protocols, 5 (11) (2010) 1737.

    Article  Google Scholar 

  11. S. Wang, K. Liu, J. Liu, Z. T.-F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y.-K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, B. K.-F. Shen and H.-R. Tseng, Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic miromixers, Angew. Chem. Int. Ed., 50 (13) (2011) 3084.

    Article  Google Scholar 

  12. GS. L. Scott, C-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, Jr, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber and M Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Natl. Acad. Sci., 107 (43) (2010) 18392.

    Article  Google Scholar 

  13. C-Y. Lee, C-L. Chang, Y-N. Wang and L-M Fu, Microfluidic mixing: A review, Int. J. Mol. Sci., 12 (5) (2011) 3263.

    Article  Google Scholar 

  14. A. Dodge, M-C. Jullien, Y-K. Lee, X. Niu, F. Okkels and P. Tabeling, An example of a chaotic micromixer: the crosschannel micromixer, C. R. Physique, 5 (2004) 557.

    Article  Google Scholar 

  15. M. Campisi, D. Accoto, F. Damiani and P. Darlo, A A softlithographed chaotic electrokinetic micromixer for efficient chemical reactions in lab-on-chips, J. Micro-Nano Mech., 5 (3–4) (2009) 69.

    Article  Google Scholar 

  16. Y. Wang, J. Zhe, B. T. F. Chung and P. Dutta, A A rapid magnetic particle driven micromixer, Microfluid Nanofluid, 4 (5) (2008) 375.

    Article  Google Scholar 

  17. D. Ahmed, X. Mao, B. K. Juluri and T. J. Huang, A A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles, Microfluid Nanofluid, 7 (5) (2009) 727.

    Article  Google Scholar 

  18. T.-D. Luong, V.-N. Phan and N.-T. Nguyen, Highthroughput micromixers based on acoustic streaming induced by surface acoustic wave, Microfluid Nanofluid, 10 (3) (2011) 619.

    Article  Google Scholar 

  19. R.-T. Tsai and C.-Y. Wu, An efficient micromixer based on multidirectional vortices due to baffles and channel curvature, Biomicrofluidics, 5 (1) (2011) 014103.

    Article  Google Scholar 

  20. F. Jiang, K. S. Drese, S. Hardt, M. Küpper and F. Schönfeld, Helical flows and chaotic mixing in curved miro channels, AIChE J., 50 (9) (2004) 2297.

    Article  Google Scholar 

  21. C. K. Chung and T. R. Shih, Effect of geometry on fluid mixing of the rhombic micromixers, Microfluid Nanofluid, 4 (5) (2008) 419.

    Article  Google Scholar 

  22. S. Hardt, H. Pennemann and F. Schönfeld, Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer, Microfluid Nanofluid, 2 (3) (2006) 237.

    Article  Google Scholar 

  23. X. Chen and X. Wang, Optimized modular design and experiment for staggered herringbone chaotic micromixer, International Journal of Chemical Reactor Engineering ISSN (2015) 7542–6580.

    Google Scholar 

  24. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone and G. M. Whitesides, Chaotic mixer for microchannels, Science, 295 (5555) (2002) 647.

    Article  Google Scholar 

  25. F. Schönfeld and S. Hardt, Simulation of helical flows in microchannels, AIChE J., 50 (4) (2004) 771.

    Article  Google Scholar 

  26. C. Li and T. Chen, Simulation and optimization of chaotic micromixer using lattice Boltzmann method, Sens. Actuators B., 106 (2) (2005) 871.

    Article  Google Scholar 

  27. N. S. Lynn and D.S. Dandy, Geometrical optimization of helical flow in grooved micromixers, Lab on a Chip, 7 (5) (2007) 580.

    Article  Google Scholar 

  28. T. P. Forbes and J. G. Kralj, Engineering and analysis surface interactions in a microfluidic herringbone mixromixer, Lap Chip, 12 (2012) 2634–2637.

    Article  Google Scholar 

  29. H. Wang, P. Iovenitti, E. Harvey and S. Masood, A Passive mixing in microchannels by applying geometric variations, Proc. SPIE, Microfluidics, BioMEMS, and Medical Microsystems, 4982 (2003) 282.

    Article  Google Scholar 

  30. H. Wang, P. Iovenitti, E. Harvey and S. Masood, Numerical investigation of mixing in microchannels with patterned grooves, J. Micromech. Microeng., 13 (2003) 801.

    Article  Google Scholar 

  31. F. M. Mastrangelo, F. Pennella, F. Consolo, M. Rasponi, A. Redaelli, F. M. Montevecchi and U. Morbiducci, Micromixing and microchannel design: vortex shape and entropy, 2nd Micro and Nano Flows Conference (2009).

    Google Scholar 

  32. P. E. Geyer, N. R. Rosaguti, D. F. Fletcher and B. S. Haynes, Thermohydraulics of square-section microchannels following a serpentine path, Microfluid Nanofluid, 2 (2006) 195.

    Article  Google Scholar 

  33. R. Choudhary, T. Bhakat, R. K. Singh, A. Ghubade, S. Mandal, A. Ghosh, A. Rammohan, A. Sharma and S. Bhattacharya, Bilayer staggered herringbone micro-mixers with symmetric and asymmetric geometries, Microfluid Nanofluid, 10 (2) (2011) 271.

    Article  Google Scholar 

  34. D. Lin, F. He, Y. Liao, J. Lin, C. Liu, J. Song and Y. Cheng, Three-dimensional staggered herringbone mixer fabricated by femtosecond laser direct writing, Journal of Optics, 15 (2) (2013) 025601.

    Article  Google Scholar 

  35. Y. H. Qian, D. d’Humières and P Lallemand, Lattic BGK models for Navier-Stokes equation, Europhys. Lett., 17 (6) (1992) 479–484.

    Article  MATH  Google Scholar 

  36. S. Succi, The Lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press (2001).

    MATH  Google Scholar 

  37. H. K. Moffatt, The degree of knottedness of tangled vortex lines, Journal of Fluid Mech., 25 (1) (1969) 117–129.

    Article  MATH  Google Scholar 

  38. J. C. R. Hunt and F. Hussain, A A note on velocity, vorticity and helicity of inviscid fluid elements, Journal of Fluid Mech, 229 (1991) 569–587.

    Article  MathSciNet  MATH  Google Scholar 

  39. N.-T. Nguyen and Z. Wu, Micromixers-a review, Journal Mircomech Microeng, 15 (2005) R1–R16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Sang Lee.

Additional information

Recommended by Associate Editor Jaeseon Lee

Joon Sang Lee is an Associate Professor of School of Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea. He received his doctor degree in Mecha- nical Engineering from Iowa State University. His research interests is mainly on computational fluid dynamics, including biomechanics and hemodynamics and multi-scale fluid dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, S.J., Cho, J.Y., Choi, S.B. et al. Numerical investigation of the effects of geometric parameters on transverse motion with slanted-groove micro-mixers. J Mech Sci Technol 30, 3729–3739 (2016). https://doi.org/10.1007/s12206-016-0735-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0735-z

Keywords

Navigation