Skip to main content
Log in

Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh Number (5×102 ≤ Ra ≤ 5×105), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ xh/L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt Number (Num) increases as the heater size decreases. In addition, when x h/L is less than 0.4, Num increases as x h/L increases, and Num decreases again for a larger value of x h/L. However, this trend changes when Ra is less than 104, suggesting that Num attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [1] M. Ciofalo and T. G. Karayiannis, Natural convection heat transfer in a partially or completely partitioned vertical rectangular enclosure, Int. J. Heat Mass Tran., 34 (1) (1991) 167–179.

    Article  Google Scholar 

  • [2] L. A. Florio and A. Harnoy, Combination technique for improving natural convection cooling in electronics, Int. J. Therm. Sci., 46 (1) (2007) 76–92.

    Article  Google Scholar 

  • [3] S. Singh and M. A. R. Sharif, Mixed convective cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls, Numer. Heat Tran.-Appl, 44 (3) (2003) 233–253.

    Article  MATH  Google Scholar 

  • [4] S.-K. Choi and S.-O. Kim, Turbulence modeling of natural convection in enclosures: A review, J. Mech. Sci. Technol., 26 (1) (2012) 283–297.

    Article  MATH  Google Scholar 

  • [5] S. Roh and G. Son, Numerical study of natural convection in a liquefied natural gas tank, J. Mech. Sci. Technol., 26 (10) (2012) 3133–3140.

    Article  Google Scholar 

  • [6] A. Watson, The effect of the inversion temperature on the convection of water in an enclosed rectangular cavity, The Quarterly Journal of Mechanics and Applied Mathematics, 25 (4) (1972) 423–446.

    Article  MATH  Google Scholar 

  • [7] N. Seki, S. Fukusako and H. Inaba, Free convective heat transfer with density inversion in a confined rectangular vessel, Wärme-und Stoffübertragung, 11 (3) (1978) 145–156.

    Article  Google Scholar 

  • [8] N. Rudraiah, R. M. Barron, M. Venkatachalappa and C. K. Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure, International Journal of Engineering Science, 33 (8) (1995) 1075–1084.

    Article  Google Scholar 

  • [9] N. Ramesh and S. P. Venkateshan, Effect of Surface Radiation on Natural Convection in a Square Enclosure, Journal of Thermophysics and Heat Transfer, 13 (3) (1999) 299–301.

    Article  Google Scholar 

  • [10] K. Khanafer, K. Vafai and M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat. Mass. Tran., 46 (19) (2003) 3639–3653.

    Article  MATH  Google Scholar 

  • [11] M. Jahanshahi, S. F. Hosseinizadeh, M. Alipanah, A. Dehghani and G. R. Vakilinejad, Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid, Int. Commun. Heat Mass., 37 (6) (2010) 687–694.

    Article  Google Scholar 

  • [12] G. R. Kefayati, S. F. Hosseinizadeh, M. Gorji and H. Sajjadi, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, Int. Commun. Heat Mass, 38 (6) (2011) 798–805.

    Article  Google Scholar 

  • [13] G. A. Sheikhzadeh, M. Nikfar and A. Fattahi, Numerical study of natural convection and entropy generation of Cuwater nanofluid around an obstacle in a cavity, J. Mech. Sci. Technol., 26 (10) (2012) 3347–3356.

    Article  Google Scholar 

  • [14] H. Sajjadi, M. B. Abbassi and G. R. Kefayati, Lattice Boltzmann simulation of turbulent natural convection in a square cavity using Cu/water nanofluid, J. Mech. Sci. Technol., 27 (8) (2013) 2341–2349.

    Article  Google Scholar 

  • [15] S. Kimura and A. Bejan, Natural convection in a differentially heated corner region, Physics of Fluids (1958- 1988), 28 (10) (1985) 2980–2989.

    Article  Google Scholar 

  • [16] R. Anderson and G. Lauriat, The horizontal natural convection boundary layer regime in a closed cavity, Proceedings of the Eighth International Heat Transfer Conference (1986) 1453–1458.

    Google Scholar 

  • [17] M. M. Ganzarolli and L. F. Milanez, Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides, Int. J. Heat Mass. Tran., 38 (6) (1995) 1063–1073.

    Article  Google Scholar 

  • [18] A. Dalal and M. K. Das, Natural Convection in a Rectangular Cavity Heated from Below and Uniformly Cooled from the Top and Both Sides, Numerical Heat Transfer, Part A: Applications, 49 (3) (2006) 301–322.

    Article  Google Scholar 

  • [19] M. November and M. W. Nansteel, Natural convection in rectangular enclosures heated from below and cooled along one side, Int. J. Heat Mass. Tran., 30 (11) (1987) 2433–2440.

    Article  Google Scholar 

  • [20] H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat. Fluid Fl., 29 (5) (2008) 1326–1336.

    Article  Google Scholar 

  • [21] M. L. Chadwick, B. W. Webb and H. S. Heaton, Natural convection from two-dimensional discrete heat sources in a rectangular enclosure, Int. J. Heat Mass. Tran., 34 (7) (1991) 1679–1693.

    Article  Google Scholar 

  • [22] N. Yücel, Natural convection in rectangular enclosures with partial heating and cooling, Wärme-und Stoffübertragung, 29 (8) (1994) 471–477.

    Article  Google Scholar 

  • [23] B. Calcagni, F. Marsili and M. Paroncini, Natural convective heat transfer in square enclosures heated from below, Appl. Therm. Eng., 25 (16) (2005) 2522–2531.

    Article  Google Scholar 

  • [24] D. Angeli, P. Levoni and G. S. Barozzi, Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder, Int. J. Heat Mass. Tran., 51 (3-4) (2008) 553–565.

    Article  Google Scholar 

  • [25] N. C. Markatos and K. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass. Tran., 27 (5) (1984) 755–772.

    Article  Google Scholar 

  • [26] I. E. Sarris, I. Lekakis and N. S. Vlachos, Natural convection in rectangular tanks heated locally from below, Int. J. Heat Mass. Tran., 47 (14-16) (2004) 3549–3563.

    Article  Google Scholar 

  • [27] T. Fusegi, J. M. Hyun, K. Kuwahara and B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass. Tran., 34 (6) (1991) 1543–1557.

    Article  Google Scholar 

  • [28] D. D. Gray and A. Giorgini, The validity of the boussinesq approximation for liquids and gases, Int. J. Heat Mass. Tran., 19 (5) (1976) 545–551.

    Article  Google Scholar 

  • [29] M. Comsol, COMSOL Multiphysics User Guide (Version 4.3 a), COMSOL, AB (2012).

    Google Scholar 

  • [30] G. Barakos, E. Mitsoulis and D. Assimacopoulos, Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions, International Journal for Numerical Methods in Fluids, 18 (7) (1994) 695–719.

    Article  MATH  Google Scholar 

  • [31] G. D. V. Davis, Natural convection of air in a square cavity: A bench mark numerical solution, International Journal for Numerical Methods in Fluids, 3 (3) (1983) 249–264.

    Article  Google Scholar 

  • [32] R. Krane and J. Jessee, Some detailed field measurements for a natural convection flow in a vertical square enclosure, Proceedings of the first ASME-JSME Thermal Engineering Joint Conference, ASME New York (1983) 323–329.

    Google Scholar 

  • [33] C. Choi, S. Jeong, M. Y. Ha and H. S. Yoon, Effect of a circular cylinder’s location on natural convection in a rhombus enclosure, Int. J. Heat Mass Tran., 77 (0) (2014) 60–73.

    Article  Google Scholar 

  • [34] D. H. Kang, M. Y. Ha, H. S. Yoon and C. Choi, Bifurcation to unsteady natural convection in square enclosure with a circular cylinder at Rayleigh number of 10 (7), Int. J. Heat Mass Tran., 64 (2013) 926–944.

    Article  Google Scholar 

  • [35] P. Alam, A. Kumar, S. Kapoor and S. R. Ansari, Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls, Commun. Nonlinear. Sci., 17 (6) (2012) 2403–2414.

    Article  MATH  MathSciNet  Google Scholar 

  • [36] H.-S. Chu, S. Churchill and C. Patterson, The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels, Journal of Heat Transfer, 98 (2) (1976) 194–201.

    Article  MATH  Google Scholar 

  • [37] J. Pallares, M. P. Arroyo, F. X. Grau and F. Giralt, Experimental laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers, Exp. Fluids, 31 (2) (2001) 208–218.

    Article  Google Scholar 

  • [38] J. Pallares, F. X. Grau and F. Giralt, Flow transitions in laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh numbers, Int. J. Heat Mass Tran., 42 (4) (1999) 753–769.

    Article  Google Scholar 

  • [39] G. Desrayaud and G. Lauriat, Unsteady confined buoyant plumes, Journal of Fluid Mechanics, 252 (1993) 617–646.

    Article  Google Scholar 

  • [40] M. Hasnaoui, E. Bilgen and P. Vasseur, Natural convection heat transfer in rectangular cavities partially heated from below, Journal of Thermophysics and Heat Transfer, 6 (2) (1992) 255–264.

    Article  Google Scholar 

  • [41] H. Türkoglu and N. Yücel, Effect of heater and cooler locations on natural convection in square cavities, Numerical Heat Transfer, Part A: Applications, 27 (3) (1995) 351–358.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Byon.

Additional information

Recommended by Associate Editor Ji Hwan Jeong

Ich-Long Ngo received his B.S. degree in aeronautical engineering from Hanoi University of Technology, Hanoi, Vietnam, in 2009 and his M.S. degree in mechanical engineering from Changwon National University, Changwon, Korea, in 2013. He is a Ph.D. candidate at Yeungnam University, Gyeongsan, Korea.

Chan Byon received his B.S., M.S., and Ph.D. degrees in mechanical engineering from KAIST, Daejeon, Korea. He was a visiting scholar at the University of California, Los Angeles, USA, and the Imperial College London, UK, in 2009 and 2012, respectively. He is currently working as a professor at Yeungnam University, Gyeongsan, Korea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, IL., Byon, C. Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method. J Mech Sci Technol 29, 2995–3003 (2015). https://doi.org/10.1007/s12206-015-0630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0630-z

Keywords

Navigation