Skip to main content
Log in

High-shock silicon accelerometer with suspended piezoresistive sensing bridges

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A high-shock 2000 g accelerometer with suspended piezoresistive sensing bridges has been designed, fabricated, and tested. Structural size of the accelerometer has been obtained through an optimal design process. Four resistors are electrically connected to form a Wheatstone bridge circuit. A sensitivity of 25.5 μV/g has been measured from the fabricated accelerometer with a nonlinearity of 0.2% in an acceleration range within 2000 g. The real-time response of the fabricated accelerometers accurately follows the reference accelerometer. The newly fabricated accelerometer has survived an over-shock condition of 4667 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M Roylance and J. B. Angell, A batch-fabricated silicon accelerometer, IEEE Transaction on Electron Devices, 26 (1979) 1911–1917.

    Article  Google Scholar 

  2. N. Yazdi, F. Ayazi and K. Najafi, Micromachined inertial sensors, Proceedings of the IEEE, 86(8) (1998) 1640–1659.

    Article  Google Scholar 

  3. A. A. Barlian, W. Park, J. R. Mallon, Jr., A. J. Rastegar and B. L. Pruitt, Review: Semiconductor piezoresistance for microsystems, Proceedings of the IEEE, 97(3) (2009) 513–552.

    Article  Google Scholar 

  4. S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash and S. K. Baum, A low cost monolithic accelerometer; Product/technology update, Technical Digest. IEEE Electron Devices Meeting, Dec (1992) 501–504.

    Chapter  Google Scholar 

  5. F. Rudolf, A. Jornod, J. Berqovist and H. Leuthold, Precision accelerometers with μg resolution, Sensors and Actuators A, 21 (1990) 297–302.

    Article  Google Scholar 

  6. P. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrew, T. C. Lim and M. E. Motamedi, Integrated silicon microbeam PI-FET accelerometer, IEEE Transactions on Electron Device, 29 (1982) 27–33.

    Article  Google Scholar 

  7. S. Danel, F. Michel and G. Delapierre, Micromachining of quartz and its application to an acceleration sensors Sensors and Actuators A, 23 (1990) 971–997.

    Article  Google Scholar 

  8. D. Uttamchandani, D. Liang and B. Culshaw, A micromachined silicon accelerometer with fiber optic integration, Proceedings of SPIE Integrated Optics and Microstructures, (1992) 27–33.

    Google Scholar 

  9. R. S. Huang, E. Abbapour-Sani and C. Y. Kwok, A novel accelerometer using silicon micromachined cantilever supported optical grid and PIN photodetector, Technical Digest. 8 th International conference Solid-State Sensors and Actuators (Transducers’95), June (1995) 663–666.

    Google Scholar 

  10. Analog Devices, ADXL05-monolithic accelerometer with signal conditioning, Data sheet (1995).

    Google Scholar 

  11. MEGGITT, Model 71M series Piezoresistive accelerometer, Data sheet (2013).

    Google Scholar 

  12. J. T. Suminto, A simple, high performance piezoresistive accelerometer, Transducer 91, San Francisco, California, USA (1991) 104.

    Google Scholar 

  13. Y. Ning, Y. Loke, G. McKinnon, Fabrication and characterization of high g-force, silicon piezoresistive accelerometers, Sensors and Actuators A, 48 (1995) 55–61.

    Article  Google Scholar 

  14. J. Wang and X. Li, A high-performance dual-cantilever high-shock accelerometer single-sided micromachined in (111) silicon wafers, Journal of Microelectromechanical Systems, 19 (2010) 1515–1520.

    Article  Google Scholar 

  15. K. Fan, L. Che, B. Xiong and Y. Wang, A silicon micromachined high-shock accelerometer with a bonded hinge structure, Journal of Micromechanics and Microengineering, 17 (2007) 1206–1210.

    Article  Google Scholar 

  16. Y. Zhao, X. Li, J. Liang and Z. Jiang, Design, fabrication and experiment of a MEMS piezoresistive high-g accelerometer, Journal of Mechanical Science and Technology, 27(3) (2013) 831–836.

    Article  Google Scholar 

  17. S. Shen, J. Chen and M. Bao, Analysis on twin-mass structure for a piezoresistive accelerometer, Sensors and Actuators A, 34 (1992) 101–107.

    Article  Google Scholar 

  18. J. T. Suminto, A wide frequency range, rugged silicon micro accelerometer with overrange stops, Proceedings. An Investigation of Micro Structure, Sensors, Actuators, Machines and Systems, IEEE The Ninth Annual International Workshop (1996) 180–185.

    Google Scholar 

  19. J. S. Han, J. S. Ko and J. G. Korvink, Structural optimization of a large-displacement electromagnetic Lorentz force microactuator for optical switching applications, Journal of Micromechanics and Microengineering, 14 (2004) 1585–1596.

    Article  Google Scholar 

  20. J. S. Han and B. M. Kwak, Robust optimization using a gradient index: MEMS applications, Structural and Multidisciplinary Optimization, 27 (2004) 469–478.

    Article  Google Scholar 

  21. J. S. Han, E. B. Rudnyi, and J. G. Korvink, Efficient optimization of transient dynamic problems in MEMS devices using model order reduction, Journal of Micromechanics and Microengineering, 15 (2005) 822–832.

    Article  Google Scholar 

  22. K. E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE, 70 (1982) 420–457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Soo Ko.

Additional information

Recommended by Associate Editor Si-Hyung Lim

Kong Myeong Bae received the B.S. and M.S. degrees in school of mechanical engineering from Pusan National University, Busan, Korea, in 2006 and 2008. He is currently a Ph.D. candidate in school of mechanical engineering at Pusan National University. His research interests include MEMS sensors and micro/nano technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, K.M., Lee, J.M., Kwon, K.B. et al. High-shock silicon accelerometer with suspended piezoresistive sensing bridges. J Mech Sci Technol 28, 1449–1454 (2014). https://doi.org/10.1007/s12206-014-0131-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0131-5

Keywords

Navigation