Skip to main content
Log in

Effect of intervertebral disc degeneration on biomechanical behaviors of a lumbar motion segment under physiological loading conditions

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The consideration of biomechanical alterations due to intervertebral disc (IVD) degeneration is crucial for the accurate analysis of spine biomechanics. In this study, finite element (FE) models of the L4-L5 motion segment with full coverage of the degeneration grades from healthy IVD to severe degeneration were developed. The effects of IVD degeneration on spine biomechanics were analyzed under physiological loading conditions using compressive forces and bending moments. The FE models of all degeneration grades were consistent with published data in terms of the ranges of motion. Severe IVD degeneration showed lower inter-segmental rotations in flexion-extension and lateral bending, lower intradiscal pressure in all motions, higher facet joint forces in lateral bending and axial rotation, and higher von-Mises stress in annulus ground substance in all motions versus the healthy IVD. These findings could provide fundamental information for understanding the characteristics of the biomechanical behaviors of degenerated lumbar motion segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gunzburg, R. Parkinson, R. Moore, F. Cantraine, W. Hutton, B. Vernon-Roberts and R. Fraser, A cadaveric study comparing discography, magnetic resonance imaging, histology, and mechanical behavior of the human lumbar disc, Spine (Phila Pa 1976), 17(4) (1992) 417–426.

    Article  Google Scholar 

  2. H. J. Wilke, F. Rohlmann, C. Neidlinger-Wilke, K. Werner, L. Claes and A. Kettler, Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine, Eur Spine J, 15(6) (2006) 720–730.

    Article  Google Scholar 

  3. 2010 Major Surgeries Statics, National Health Insurance Corporation, Seoul, Korea (2010).

  4. S. Kumaresan, N. Yoganandan, F. A. Pintar, D. J. Maiman and V. K. Goel, Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation, J Orthop Res, 19(5) (2001) 977–984.

    Article  Google Scholar 

  5. A. Rohlmann, T. Zander, H. Schmidt, H. J. Wilke and G. Bergmann, Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method, J Biomech, 39(13) (2006) 2484–2490.

    Article  Google Scholar 

  6. M. Kurutzand L. Oroszvary, Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase, J Biomech, 43(3) (2010) 433–441.

    Article  Google Scholar 

  7. L. M. Ruberte, R. N. Natarajan and G. B. Andersson, Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—a finite element model study, J Biomech, 42(3) (2009) 341–348.

    Article  Google Scholar 

  8. H. Schmidt, F. Heuer and H. J. Wilke, Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads, Med Eng Phys, 31(6) (2009) 642–649.

    Article  Google Scholar 

  9. H. Schmidt, A. Kettler, A. Rohlmann, L. Claes and H. J. Wilke, The risk of disc prolapses with complex loading in different degrees of disc degeneration — a finite element analysis, Clin Biomech (Bristol, Avon), 22(9) (2007) 988–998.

    Article  Google Scholar 

  10. Q. H. Zhang, Y. L. Zhou, D. Petit and E. C. Teo, Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression, Med Eng Phys, 31(5) (2009) 533–538.

    Article  Google Scholar 

  11. A. Shirazi-Adl, A. M. Ahmed and S. C. Shrivastava, Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine (Phila Pa 1976), 11(9) (1986) 914–927.

    Article  Google Scholar 

  12. V. K. Goel, B. T. Monroe, L. G. Gilbertson and P. Brinckmann, Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads, Spine (Phila Pa 1976), 20(6) (1995) 689–698.

    Article  Google Scholar 

  13. Y. Guan, N. Yoganandan, J. Zhang, F. A. Pintar, J. F. Cusick, C. E. Wolfla and D. J. Maiman, Validation of a clinical finite element model of the human lumbosacral spine, Med Biol Eng Comput, 44(8) (2006) 633–641.

    Article  Google Scholar 

  14. R. N. Natarajan, B. H. Chen, H. S. An and G. B. Andersson, Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis, Spine (Phila Pa 1976), 25(8) (2000) 955–961.

    Article  Google Scholar 

  15. K. Kim, W. M. Park, Y. H. Kim and S. Lee, Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine, Proc Inst Mech Eng H, 224(3) (2010) 477–485.

    Article  MathSciNet  Google Scholar 

  16. S. H. Lee, Y. J. Im, K. T. Kim, Y. H. Kim, W. M. Park and K. Kim, Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis, Spine (Phila Pa 1976), 36(9) (2011) 700–708.

    Article  Google Scholar 

  17. W. M. Park, Y. S. Park, K. Kim and Y. H. Kim, Biomechanical comparison of instrumentation techniques in treatment of thoracolumbar burst fractures: a finite element analysis, J Orthop Sci, 14(4) (2009) 443–449.

    Article  Google Scholar 

  18. D. R. Wagnerand and J. C. Lotz, Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus, J Orthop Res, 22(4) (2004) 901–909.

    Article  Google Scholar 

  19. Y. Masharawi, B. Rothschild, G. Dar, S. Peleg, D. Robinson, E. Been and I. Hershkovitz, Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis, Spine (Phila Pa 1976), 29(16) (2004) 1755–1763.

    Article  Google Scholar 

  20. G. A. Holzapfel, C. A. Schulze-Bauer, G. Feigl and P. Regitnig, Single lamellar mechanics of the human lumbar anulus fibrosus, Biomech Model Mechanobiol, 3(3) (2005) 125–140.

    Article  Google Scholar 

  21. K. L. Markolf and J. M. Morris, The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces, J Bone Joint Surg Am, 56(4) (1974) 675–687.

    Google Scholar 

  22. Y. Guan, N. Yoganandan, J. Moore, F. A. Pintar, J. Zhang, D. J. Maiman and P. Laud, Moment-rotation responses of the human lumbosacral spinal column, J Biomech, 40(9) (2007) 1975–1980.

    Article  Google Scholar 

  23. M. M. Panjabi, T. R. Oxland, I. Yamamoto and J. J. Crisco, Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, J Bone Joint Surg Am, 76(3) (1994) 413–424.

    Google Scholar 

  24. M. Mimura, M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto and A. Vasavada, Disc degeneration affects the multidirectional flexibility of the lumbar spine, Spine (Phila Pa 1976), 19(12) (1994) 1371–1380.

    Article  Google Scholar 

  25. A. Kettler, F. Rohlmann, C. Ring, C. Mack and H. J. Wilke, Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database, Eur Spine J, 20(4) (2011) 578–584.

    Article  Google Scholar 

  26. A. Fujiwara, T. H. Lim, H. S. An, N. Tanaka, C. H. Jeon, G. B. Andersson and V. M. Haughton, The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine, Spine (Phila Pa 1976), 25(23) (2000) 3036–3044.

    Article  Google Scholar 

  27. N. Tanaka, H. S. An, T. H. Lim, A. Fujiwara, C. H. Jeon and V. M. Haughton, The relationship between disc degeneration and flexibility of the lumbar spine, Spine J, 1(1) (2001) 47–56.

    Article  Google Scholar 

  28. M. Krismer, C. Haid, H. Behensky, P. Kapfinger, F. Landauer and F. Rachbauer, Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration, Spine (Phila Pa 1976), 25(16) (2000) 2020–2027.

    Article  Google Scholar 

  29. T. R. Oxland, T. Lund, B. Jost, P. Cripton, K. Lippuner, P. Jaeger and L. P. Nolte, The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study, Spine (Phila Pa 1976), 21(22) (1996) 2558–2569.

    Article  Google Scholar 

  30. C. S. Kuo, H. T. Hu, R. M. Lin, K. Y. Huang, P. C. Lin, Z. C. Zhong and M. L. Hseih, Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure-a finite element study, BMC Musculoskelet Disord, 11 (2010) 151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Hyuk Kim.

Additional information

Recommended by Associate Editor Chang-Wan Kim

Won Man Park received his B.S., M.S. and Ph.D. in Mechanical Engineering from Kyung Hee University in 2010. He is a Postdoctoral fellow at Mechanical Engineering, Kyung Hee University, Korea.

Yoon Hyuk Kim received his B.S., M.S. and Ph.D. in Mechanical Engineering from KAIST in 2000. He is an associate Professor at Mechanical Engineering, Kyung Hee University, Korea.

Sangho Lee received his B.S., M.S. in Chemical Engineering from Chung Buk National University in 1984, and Ph.D. in Polymer Engineering from Tokyo University of Agriculture and Technology in 1993. He is a Principal Researcher at Scientific Data Research Team, KISTI (Korea Institute of Science and Technology Information), Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, W.M., Kim, Y.H. & Lee, S. Effect of intervertebral disc degeneration on biomechanical behaviors of a lumbar motion segment under physiological loading conditions. J Mech Sci Technol 27, 483–489 (2013). https://doi.org/10.1007/s12206-012-1264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-012-1264-z

Keywords

Navigation