Skip to main content
Log in

Biomechanical comparison of instrumentation techniques in treatment of thoracolumbar burst fractures: a finite element analysis

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

There are several surgical techniques currently employed to treat thoracolumbar burst fractures, including anterior fixation, posterior fixation, or combined anterior-posterior fixation. Biomechanical analysis of the various types of surgical techniques is therefore critical to enable selection of the appropriate surgical method for successful spinal fusion. However, the effects of the various spinal fusion techniques on spinal stiffness have not been clearly defined, and the strengths and weaknesses of each fusion technique are still controversial.

Methods

The biomechanical effects of increasing the number of anterior rods and removing the mid-column in anterior fixation, posterior fixation, and combined anterior-posterior fixation on spinal stiffness in thoracolumbar burst fractures was investigated. Finite element analysis was used to investigate the effects of the three fusion methods on spine biomechanics because of its ability to control for variables related to the material and experimental environment.

Results

The stiffness of the fused spinal junction highly correlates with the selection of an additional posterior fixation. The mid-column decompression showed a significant change in stiffness, although the effect of decompression was much less than that with the application of posterior fixation and the anterior rod number. In addition, two-rod anterior fixation without additional posterior fixation is able to provide enough spinal stability; and one-rod anterior fixation with posterior fixation yields better results in regard to preventing excessive motion and ensuring spinal stability.

Conclusions

The present study shows that careful consideration is necessary when choosing the anterior rod number and applying posterior fixation and mid-column decompression during surgical treatment of thoracolumbar burst fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood KB, Bohn D, Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit. J Spinal Disord Tech 2005;18:S15–S23.

    Article  PubMed  Google Scholar 

  2. Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol 2007;67:221–231.

    Article  PubMed  Google Scholar 

  3. Goto K, Tajima N, Chosa E, Totoribe K, Kubo S, Kuroki H, et al. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). J Orthop Sci 2003;8:577–584.

    Article  PubMed  Google Scholar 

  4. Natarajan RN, Garretson RB 3rd, Biyani A, Lim TH, Andersson GB, An HS. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Spine 2003;28:1103–1112.

    Article  PubMed  Google Scholar 

  5. Natarajan RN, Andersson GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 1999;24:1873–1881.

    Article  PubMed  CAS  Google Scholar 

  6. Argoubi M, Shirazi-Adl A. Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 1996;29:1331–1339.

    Article  PubMed  CAS  Google Scholar 

  7. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 1996;21:2570–2579.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell-Kyureghyan N, Jorgensen M, Burr D, Marras W. The prediction of lumbar spine geometry: method development and validation. Clin Biomech 2005;20:455–464.

    Article  Google Scholar 

  9. Polikeit A, Ferguson SJ, Nolte LP, Orr TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 2003;12:413–420.

    Article  PubMed  Google Scholar 

  10. Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys 2006;28:90–98.

    Article  PubMed  Google Scholar 

  11. Goel VK, Ramirez SA, Kong W, Gilbertson LG. Cancellous bone young’s modulus variation within the vertebral body of a ligamentous lumbar spine: application of bone adaptive remodeling concepts. J Biomech Eng 1995;117:266–271.

    Article  PubMed  CAS  Google Scholar 

  12. White AA, Panjabi MM. Clinical biomechanics of the spine, 2nd edn. Philadelphia: Lippincott Williams & Wilkins; 1990.

    Google Scholar 

  13. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 1994;76:413–424.

    PubMed  CAS  Google Scholar 

  14. Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE, Li S, Patwardhan A. Development and validation of a viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mec 1997;28:81–93.

    Article  Google Scholar 

  15. Knop C, Lange U, Bastian L, Blauth M. Three-dimensional motion analysis with Synex: comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 2000;9:472–485.

    Article  PubMed  CAS  Google Scholar 

  16. Kanayama M, Ng JT, Cunningham BW, Abumi K, Kaneda K, McAfee PC. Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 1999;24:445–450.

    Article  PubMed  CAS  Google Scholar 

  17. Carl AL, Tranmer BI, Sachs BL. Anterolateral dynamized instrumentation and fusion for unstable thoracolumbar and lumbar burst fractures. Spine 1997;22:686–690.

    Article  PubMed  CAS  Google Scholar 

  18. McDonough PW, Davis R, Tribus C, Zdeblick TA. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine 2004;29:1901–1909.

    Article  PubMed  Google Scholar 

  19. Schreiber U, Bence T, Grupp T, Steinhauser E, Mückley T, Mittelmeier W, et al. Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation. Eur Spine J 2005;14:197–204.

    Article  PubMed  Google Scholar 

  20. Payer M. Unstable burst fractures of the thoraco-lumbar junction, treatment by posterior bisegmental correction/fixation and staged anterior corpectomy and titanium cage implantation. Acta Neurochir (Wien) 2006;148:299–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Park, W.M., Park, YS., Kim, K. et al. Biomechanical comparison of instrumentation techniques in treatment of thoracolumbar burst fractures: a finite element analysis. J Orthop Sci 14, 443–449 (2009). https://doi.org/10.1007/s00776-009-1341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-009-1341-z

Keywords

Navigation