Skip to main content
Log in

Macro-micro Performances of Granular Materials Considering the Influences of Density and Stress Path under True Triaxial Conditions: A DEM Investigation

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The mechanical behaviors of granular materials are dominated by internal structure, which are related to fabric evolution during loading. This study investigated the fabric evolution of granular materials with different densities and stress paths under true triaxial conditions. A series of discrete element numerical simulations with different intermediate principal stress coefficient b were carried out along the constant mean stress p and the constant minor principal stress σ3 stress paths for both loose and dense specimens. The results indicated that the constant-p stress path produced a faster increase in stress ratio than the constant-σ3 stress path at the same b. The effects of specimen density on the peak friction angle are greater than that of stress path. The microscopic analyses revealed that the constant-p stress path facilitates a much more preferential distribution of normal contact force network along the major principal direction. The discrepancies in the peak stress ratio under two stress paths were thus interpreted. The dense specimen will rapidly form a higher anisotropic distribution of the normal contact force network upon shearing, and its anisotropic intensity was almost twice that of the loose specimen at the peak stress state. In addition, a unique relationship between the strong deviatoric fabric ratio and stress ratio was presented. The ratio of the two was approximately 1.0 regardless of stress path, density and b value. Finally, an underlying relationship between the stress components and the whole fabric components at the critical state was confirmed by introducing a new stress tensor. The three principal components (F1, F2 and F3) of the whole fabric tensor can be quantitatively represented with the imposed three principal stress components (σ1, σ2 and σ3) by employing a relationship of F1:F2:F3 = σ10.27:σ20.27:σ30.27. It provides a more comprehensive perspective to analyze the macro-micro performances of granular materials at the critical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant No.41572255], and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology [Grant No. 2021B1212040003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, H., Ge, X. et al. Macro-micro Performances of Granular Materials Considering the Influences of Density and Stress Path under True Triaxial Conditions: A DEM Investigation. KSCE J Civ Eng 27, 4176–4191 (2023). https://doi.org/10.1007/s12205-023-2159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-023-2159-5

Keywords

Navigation