Skip to main content
Log in

Inter-comparison on the Suitability of Rain-Based Meteorological Drought in Johor River Basin, Malaysia

  • Water Resources and Hydrologic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Drought is identified and quantified using a variety of methods. This study aims to evaluate the performance of several rain-based meteorological droughts, namely, Rainfall Anomaly Index (RAI), Standard Precipitation Index (SPI), China-Z Index (CZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI) on 1-, 3-, 6-, 9-, 12-, 18-, 24-, 48-, and 72-month time scales based on monthly precipitation totals for 24 Johor River Basin (JRB) stations from 1970 to 2015. After imputation of missing data with Multiple Imputation by Chained Equations (MICE), homogeneity test for the annual time series found that 21 stations were ‘useful’, 1 station ‘doubtful’ and 2 stations ‘suspect’, meanwhile monthly time series found 17 stations ‘useful’, 1 station ‘doubtful’ and 6 stations ‘suspect’. The performance of CZI, RAI, and SPI were found to be higher compared to others based on the correlation between drought indices, average correlation of a combination of drought indices for all stations (correlation plot and heatmap), scatter plot linearity between drought indices in capturing the wet/dry conditions, and simulating the historical drought events. However, based on the ability to simulate the historical event, spatial assessment, and frequency analysis, it was found that RAI is more responsive in identifying the ‘drought prone’ area to enable a better spatial mapping of the 3- and 6-months drought condition in JRB. ‘Moderately dry’ condition is expected to be temporally and spatially widespread as North East (NE) monsoon becomes drier. Meanwhile, a condition of ‘very dry’ and ‘extremely dry’ is expected to be more prevalent in the South East area of the basin, particularly due to the drier South West (SW) monsoon period. Study results indicate that RAI can perform comparatively better than other studied indices, and because the calculations of RAI are relatively simple, they can be used as better tools to monitor the conditions of drought in JRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adnan S, Ullah K, Shuanglin L, Gao S, Khan AH, Mahmood R (2018) Comparison of various drought indices to monitor drought status in Pakistan. Climate Dynamics 51(56):1885–1899

    Article  Google Scholar 

  • Agnew CT (2000) Using the SPI to identify drought. Drought Network News 12(1)

  • Akhtar MP, Roy LB, Sinha A (2021) A comparative study on regional drought characterization using estimated drought indices in conjunction with trend analysis in peninsular India. In: Water resources in arid lands: Management and sustainability. Springer, Cham, Switzerland, DOI: https://doi.org/10.1007/978-3-030-67028-3_8

    Google Scholar 

  • Anderegg LDL, Anderegg WRL, Berry JA (2013) Not all droughts are created equal: Translating meteorological drought into woody plant mortality. Tree Physiology 33(7):701–712, DOI: https://doi.org/10.1093/treephys/tpt044

    Article  Google Scholar 

  • Arguez A, Vose RS (2011) The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bulletin of the American Meteorological Society 92(6):699–704, DOI: https://doi.org/10.1175/2010BAMS2955.1

    Article  Google Scholar 

  • Ballah A, Benaabidate L (2021) Assessing the performance of various meteorological drought indices in capturing historic droughts in the south of Algeria. Arabian Journal of Geosciences 14(13):1–11

    Article  Google Scholar 

  • Banerjee O, Bark R, Connor J, Crossman ND (2013) An ecosystem services approach to estimating economic losses associated with drought. Ecological Economics 91:19–27, DOI: https://doi.org/10.1016/j.ecolecon.2013.03.022

    Article  Google Scholar 

  • Bayissa Y, Maskey S, Tadesse T, van Andel SJ, Moges S, van Griensven A, Solomatine D (2018) Comparison of the performance of six drought indices in characterizing historical drought for the Upper Blue Nile Basin, Ethiopia. Geosciences 8(3):81, DOI: https://doi.org/10.3390/GEOSCIENCES8030081

    Article  Google Scholar 

  • Berliana SS, Susanti I, Siswanto B, Nurlatifah A, Latifah H, Witono A, Slamet L, Suhermat M (2021) Analysis of wet and dry season by using the Palmer Drought Severity Index (PDSI) over Java Island. AIP Conference Proceedings 2331(1):030010, DOI: https://doi.org/10.1063/5.0041843

    Article  Google Scholar 

  • Boustani A, Ulke A (2020) Investigation of meteorological drought indices for environmental assessment of Yesilirmak region. Journal of Environmental Treatment Techniques 8(1):374–381

    Google Scholar 

  • Cao Y, Yuan J, Wei H (2021) Relationship between meteorological and hydrological drought in the mountain areas: A study in the upper reaches of Ying River, China. Desalination and Water Treatment 220(2021):22–35, DOI: https://doi.org/10.5004/dwt.2021.27089

    Article  Google Scholar 

  • Carr MKV (2011) The water relations and irrigation requirements of oil palm (Elaeis guineensis): A review. Experimental Agriculture 47(4): 629–652, DOI: https://doi.org/10.1017/S0014479711000494

    Article  Google Scholar 

  • Chang CK, Ghani AA, Othman MA (2017) Homogeneity testing and trends analysis in long term rainfall data for sungai Pahang river basin over 40 years records. Proceedings of the 37th IAHR world congress, August 14–18, Kuala Lumpur, Malaysia

  • Che Ros F, Tosaka H, Sidek LM, Basri H (2016) Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management 14(2):151–163, DOI: https://doi.org/10.1080/15715124.2015.1105233

    Article  Google Scholar 

  • Chuah CJ, Ho BH, Chow WTL (2018) Trans-boundary variations of urban drought vulnerability and its impact on water resource management in Singapore and Johor, Malaysia. Environmental Research Letters 13:074011, DOI: https://doi.org/10.1088/1748-9326/aacad8

    Article  Google Scholar 

  • Costa MS, Oliveira-Júnior JF, Santos PJ, Filho WLF, Gois G, Blanco CJC, Teodoro PE, Da Silva Junior A, Santiago DB, Souza EO, Jardim AMRF (2021) Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño—Southern Oscillation. International Journal of Climatology 41(S1): E2111–E2135, DOI: https://doi.org/10.1002/JOC.6835

    Article  Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Doggett MK, Smith JI (2007) Observer bias in daily precipitation measurements at United States Cooperative Network Stations. Bulletin of the American Meteorological Society 88(6):899–912, DOI: https://doi.org/10.1175/BAMS-88-6-899

    Article  Google Scholar 

  • Ekwezuo CS, Madu JC (2020) Evaluation of different rainfall-based drought indices detection of meteorological drought events in Imo state, Nigeria. Journal of Applied Sciences and Environmental Management 24(4):713–717, DOI: https://doi.org/10.4314/jasem.v24i4.25

    Article  Google Scholar 

  • Elhoussaoui A, Zaagane M, Benaabidate L (2021) Comparison of various drought indices for assessing drought status of the Northern Mekerra watershed, Northwest of Algeria. Arabian Journal of Geosciences 14(10), DOI: https://doi.org/10.1007/S12517-021-07269-Y

  • Fung KF, Huang YF, Koo CH (2020) Assessing drought conditions through temporal pattern, spatial characteristic and operational accuracy indicated by SPI and SPEI: Case analysis for Peninsular Malaysia. Natural Hazards 103(2):2071–2101

    Article  Google Scholar 

  • Gibbs WJ, Maher JV (1967) Rainfall deciles as drought indicators. Bureau of Meteorology Bulletin 48, Commonwealth of Australia, Melbourne, Australia

  • Gocic M, Trajkovic S (2014) Spatiotemporal characteristics of drought in Serbia. Journal of Hydrology 510:110–123, DOI: https://doi.org/10.1016/j.jhydrol.2013.12.030

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: A calculation algorithm. Journal of the American Water Resources Association 35(2):311–322, DOI: https://doi.org/10.1111/j.1752-1688.1999.tb03592.x

    Article  Google Scholar 

  • Hadisuwito AS, Hassan FH (2018) Selection drought index calculation methods using electre, topsis, and analytic hierarchy process. International Journal of Engineering & Technology 7(4.36):1413–1418

    Google Scholar 

  • Homdee T, Pongput K, Kanae S (2016) A comparative performance analysis of three standardized climatic drought indices in the Chi River basin, Thailand. Agriculture and Natural Resources 50(3):211–219, DOI: https://doi.org/10.1016/j.anres.2016.02.002

    Article  Google Scholar 

  • Hosseinzadeh Talaee P, Kouchakzadeh M, Shifteh Some’e B (2014) Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology 118(1–2):297–305, DOI: https://doi.org/10.1007/s00704-013-1074-y

    Article  Google Scholar 

  • Hou L, Huang J, Wang J (2017) Early warning information, farmers’ perceptions of, and adaptations to drought in China. Climatic Change 141(2):197–212, DOI: https://doi.org/10.1007/s10584-017-1900-9

    Article  Google Scholar 

  • Hyndman D, Hyndman D (2016) Natural hazards and disasters. Cengage Learning, Boston, MA, USA

    Google Scholar 

  • Irwan Z, Wan Kamarudin WF, Mat Amin AR, Muhammud A, Muda SM, Mohd Akhir NEF, Abdullah S (2019) The effects of equinox phenomenon on climate change. e-Academia Journal 7(SI-TeMIC18)

  • Jain VK, Pandey RP, Jain MK, Byun HR (2015) Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather and Climate Extremes 8:1–11, DOI: https://doi.org/10.1016/j.wace.2015.05.002

    Article  Google Scholar 

  • Javed T, Li Y, Rashid S, Li F, Hu Q, Feng H, Chen X, Ahmad S, Liu F, Pulatov B (2021) Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Science of the Total Environment 759:143530, DOI: https://doi.org/10.1016/J.SCITOTENV.2020.143530

    Article  Google Scholar 

  • Kamalanandhini M, Annadurai R (2021) Assessment of five meteorological indices for monitoring the drought condition in Chengalpattu District, Tamilnadu, India. Materials Today: Proceedings 46:3699–3703, DOI: https://doi.org/10.1016/J.MATPR.2021.01.850

    Google Scholar 

  • Kang H, Sridhar V (2021) A near-term drought assessment using hydrological and climate forecasting in the Mekong River Basin. International Journal of Climatology 41(S1):E2497–E2516, DOI: https://doi.org/10.1002/JOC.6860

    Article  Google Scholar 

  • Koseki S, Koh TY, Teo CK (2014) Borneo vortex and mesoscale convective rainfall. Atmospheric Chemistry and Physics 14:4539–4562, DOI: https://doi.org/10.5194/acp-14-4539-2014

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3):259–263, DOI: https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Kumar U, Singh S, Bisht JK, Kant L (2021) Use of meteorological data for identification of agricultural drought in Kumaon region of Uttarakhand. Journal of Earth System Science 130(3):1–13

    Google Scholar 

  • Kundu A, Dutta D, Patel NR Denis DM, Chattoraj KK (2021) Evaluation of socio-economic drought risk over bundelkhand region of India using analytic hierarchy process (AHP) and geo-spatial techniques. Journal of the Indian Society of Remote Sensing 49(6):1365–1377

    Article  Google Scholar 

  • Lin NJ, Aziz SA, Feng HY, Wayayok A, Kamal MR (2015) Homogeneity analysis of rainfall in Kelantan, Malaysia. Jurnal Teknologi 76(15): 1–6, DOI: https://doi.org/10.11113/JT.V76.5944

    Google Scholar 

  • Livada I, Assimakopoulos VD (2006) Spatial and temporal analysis of drought in greece using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology 89(3):143–153, DOI: https://doi.org/10.1007/S00704-005-0227-Z

    Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. International Journal of Climatology 22:1571–1592, DOI: https://doi.org/10.1002/joc.846

    Article  Google Scholar 

  • Loukas a, Vasiliades L, Dalezios NR (2003) Intercomparison of meteorological drought indices for drought assessment and monitoring in Greece. Proceedings of the 8th international conference on environmental science and technology, September 8–10, Lemnos Island, Greece

  • Mahmoudi P, Rigi A, Miri Kamak M (2019) A comparative study of precipitation-based drought indices with the aim of selecting the best index for drought monitoring in Iran. Theoretical and Applied Climatology 137(3–4):3123–3138

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. 8th conference on applied climatology, January 17–22, Anaheim, CA, USA

  • Menne MJ, Williams CN, Gleason BE, Jared Rennie J, Lawrimore JH (2018) The global historical climatology network monthly temperature dataset, version 4. Journal of Climate 31(24):9835–9854, DOI: https://doi.org/10.1175/JCLI-D-18-0094.1

    Article  Google Scholar 

  • Meteorological Department M (2016) General climate of Malaysia. Ministry of Science, Technology and Innovation, Putrajaya, Malaysia

    Google Scholar 

  • Minea I, Iosub M, Boicu D (2021) Multi-scale approach for different type of drought in temperate climatic conditions. Natural Hazards 110:1153–1177

    Article  Google Scholar 

  • Ming Kang H, Yusof F (2012) Homogeneity tests on daily rainfall series in peninsular Malaysia. International Journal of Contemporary Mathematical Sciences 7(1):9–22

    MATH  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. Journal of Hydrology 291(1–2):202–216, DOI: https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Moghimi MM, Zarei AR, Moghimi MM, Zarei AR (2021) Evaluating performance and applicability of several drought indices in arid regions. APJAS 57(3):645–661, DOI: https://doi.org/10.1007/S13143-019-00122-Z

    Google Scholar 

  • Montaseri M, Amirataee B (2017) Comprehensive stochastic assessment of meteorological drought indices. International Journal of Climatology 37(2):998–1013, DOI: https://doi.org/10.1002/JOC.4755

    Article  Google Scholar 

  • Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology 26(7):971–985, DOI: https://doi.org/10.1002/joc.1264

    Article  Google Scholar 

  • Munson SM, Bradford JB, Hultine KR (2020) An integrative ecological drought framework to span plant stress to ecosystem transformation. Ecosystems 24(4):739–754, DOI: https://doi.org/10.1007/S10021-020-00555-Y

    Article  Google Scholar 

  • Nedham US, Hassan AS (2020) Comparison of some drought indices in Iraq. Al-Mustansiriyah Journal of Science 30(4):1–9

    Article  Google Scholar 

  • Noor NM, Noor NM, Alias R, Ideris MM (2020) Drought indices monitoring using SPI and Z index score for gua musang, Kelantan. IOP Conference Series: Materials Science and Engineering 932(1): 012050, DOI: https://doi.org/10.1088/1757-899X/932/1/012050

    Article  Google Scholar 

  • Norazizi NAA, Deni SM (2019) Comparison of artificial neural network (ANN) and other imputation methods in estimating missing rainfall data at Kuantan station. Communications in Computer and Information Science 1100:298–306, DOI: https://doi.org/10.1007/978-981-15-0399-3_24

    Article  Google Scholar 

  • Nugroho JT, Nurfitriani D, Suwarsono Chulafak GA, Manalu RJ, Harini S, Nugroho JT, Nurfitriani D, Suwarsono Chulafak GA, Manalu RJ, Harini S (2021) Rainfall anomalies assessment during drought episodes of 2015 in Indonesia using CHIRPS Data. E&ES 739(1): 012044, DOI: https://doi.org/10.1088/1755-1315/739/1/012044

    Google Scholar 

  • Poyatos R Sus O, Badiella L, Mencuccini M, Martínez-Vilalta J (2018) Gap-filling a spatially explicit plant trait database: Comparing imputation methods and different levels of environmental information. Biogeosciences 15(9):2601–2617, DOI: https://doi.org/10.5194/BG-15-2601-2018

    Article  Google Scholar 

  • Rajendram K (2021) Rainfall variability and drought occurrences in the Batticaloa district, Sri Lanka. World News of Natural Sciences 39:30–45

    Google Scholar 

  • Rooy V (1965) A rainfall anomaly index independent of time and space. Notos 14:43–48

    Google Scholar 

  • Royston P (2005) MICE for multiple imputation of missing values. United Kingdom Stata Users’ Group Meetings 2005

  • Sahin S, Cigizoglu HK (2010) Homogeneity analysis of Turkish meteorological data set. Hydrological Processes 24(8):981–992, DOI: https://doi.org/10.1002/hyp.7534

    Article  Google Scholar 

  • Salehnia N, Alizadeh A, Sanaeinejad H, Bannayan M, Zarrin A, Hoogenboom G (2017) Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land 9:797–809, DOI: https://doi.org/10.1007/s40333-017-0070-y

    Article  Google Scholar 

  • Shahabfar A, Eitzinger J (2013) Spatio-temporal analysis of droughts in semi-arid regions by using meteorological drought indices. Atmosphere 4(2):94–112, DOI: https://doi.org/10.3390/atmos4020094

    Article  Google Scholar 

  • Souza AGSS, Ribeiro Neto A, Souza LL (2021) Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sensing of Environment 252:112124, DOI: https://doi.org/10.1016/J.RSE.2020.112124

    Article  Google Scholar 

  • Suhaila J, Deni SM, Zawiah Zin WAN, Jemain AA (2010) Trends in Peninsular Malaysia rainfall data during the Southwest Monsoon and Northeast Monsoon seasons: 1975–2004. Sains Malaysiana 39(4): 533–542

    Google Scholar 

  • Suhaila J, Sayang MD, Jemain AA (2008) Revised spatial weighting methods for estimation of missing rainfall data. Asia-Pacific Journal of Atmospheric Science 44(2):93–104

    Google Scholar 

  • Suhaila J, Yusop Z (2018) Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 130:565–581, DOI: https://doi.org/10.1007/s00703-017-0537-6

    Article  Google Scholar 

  • Sung JH, Chung ES (2014) Development of streamflow drought severity-duration-frequency curves using the threshold level method. Hydrology and Earth System Sciences 18(9):3341–3351, DOI: https://doi.org/10.5194/hess-18-3341-2014

    Article  Google Scholar 

  • Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bulletin of the American Meteorological Society 83(8):1181–1190, DOI: https://doi.org/10.1175/1520-0477-83.8.1181

    Article  Google Scholar 

  • Swain S, Mishra SK, Pandey A (2021) A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environmental Earth Sciences 80(6):1–15

    Article  Google Scholar 

  • Syafrina AH, Norzaida A, Noor Shazwani O (2017) Rainfall analysis in the northern region of Peninsular Malaysia. International Journal of Advance and Applied Sciences 4(11):11–16, DOI: https://doi.org/10.21833/IJAAS.2017.011.002

    Article  Google Scholar 

  • Tadic L, Dadić T, Bosak M (2015) Comparison of different drought assessment methods in continental Croatia. Semantic Scholar

  • Tan ML, Chua VP, Li C, Brindha K (2019a) Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia. Theoretical and Applied Climatology 135:825–837, DOI: https://doi.org/10.1007/s00704-018-2409-5

    Article  Google Scholar 

  • Tan ML, Ibrahim AL, Yusop Z, Duan Z, Ling L (2015) Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrological Sciences Journal 60(5):873–889, DOI: https://doi.org/10.1080/02626667.2014.967246

    Google Scholar 

  • Tan ML, Samat N, Chan NW, Lee AJ, Li C (2019b) Analysis of precipitation and temperature extremes over the Muda River Basin, Malaysia. Water (Switzerland) 1(2):283, DOI: https://doi.org/10.3390/w11020283

    Google Scholar 

  • Tan ML, Tan KC, Chua VP, Chan NW (2017) Evaluation of TRMM product for monitoring drought in the Kelantan River basin, Malaysia. Water 9(1):57, DOI: https://doi.org/10.3390/W9010057

    Article  Google Scholar 

  • van Buuren S, Groothuis-Oudshoorn K (2011) Mice: Multivariate imputation by chained equations in R. Journal of Statistical Software 45(3):1–67, DOI: https://doi.org/10.18637/jss.v045.i03

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions 16(10):1–27, DOI: https://doi.org/10.1175/2012EI000434.1

    Article  Google Scholar 

  • Wei W, Zhang J, Zhou L, Xie B, Zhou J, Li C (2021) Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environmental Science and Pollution Research 28(16):20408–20425

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 23(6):679–692, DOI: https://doi.org/10.1002/joc.906

    Article  Google Scholar 

  • World Meteorological Organization (2012) Standardized precipitation index user guide (M. Svoboda, M. Hayes and D. Wood). WMO-No.1090, World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  • Wu H, Hayes MJ, Weiss A, Hu Q (2001) An evolution of the standardized precipitation index, the China-Z index and the statistical Z-score. International Journal of Climatology 21(6):745–758, DOI: https://doi.org/10.1002/joc.658

    Article  Google Scholar 

  • Yip B, Sang W, Yik DJ, Chang NK, Yunus F (2015) Analysis on the long term trends of consecutive dry and wet days and extreme rainfall amounts in Malaysia. Jabatan Meteorologi Malaysia, Petaling Jaya, Malaysia

    Google Scholar 

  • Yusof F, Hui-Mean F, Suhaila S, Ching-Yee K (2012) Trend analysis for drought event in peninsular Malaysia. Jurnal Teknologi (Sciences and Engineering) 57(1):211–218, DOI: https://doi.org/10.11113/jt.v57.1535

    Google Scholar 

  • Yusof F, Hui-Mean F, Suhaila J, Yusop Z, Ching-Yee K (2014) Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia. Theoretical and Applied Climatology 115(3):503–516, DOI: https://doi.org/10.1007/s00704-013-0918-9

    Article  Google Scholar 

  • Zeybekoglu U, Aktürk G (2021) A comparison of the China-Z index (CZI) and the standardized precipitation index (SPI) for drought assessment in the Hirfanli Dam basin in central Turkey. Arabian Journal of Geosciences 14(24):1–13, DOI: https://doi.org/10.1007/S12517-021-09095-8

    Article  Google Scholar 

  • Zin WZW, Jemain AA, Ibrahim K (2012) Analysis of drought condition and risk in Peninsular Malaysia using Standardised Precipitation Index. Theoretical and Applied Climatology 111(3–4):559–568, DOI: https://doi.org/10.1007/S00704-012-0682-2

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Water Security and Sustainable Development Hub funded by the UK Research and Innovation’s Global Challenges Research Fund (GCRF) [grant number: ES/S008179/1] Universiti Teknologi Malaysia under High Impact Research Grant [grant number: Vot No 04G46].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfaqar Sa’adi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa’adi, Z., Yusop, Z. & Alias, N.E. Inter-comparison on the Suitability of Rain-Based Meteorological Drought in Johor River Basin, Malaysia. KSCE J Civ Eng 26, 2519–2537 (2022). https://doi.org/10.1007/s12205-022-1481-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-022-1481-7

Keywords

Navigation