Skip to main content
Log in

A Simplified Analytical Solution for the Necking Semi-empirical Stresses based on Aramis System

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

To make comparison between classic necking stress solution Bridgman formula and ChenChi formula, the difference of necking surface profile assumptions in these two formulas were discussed theoretically. Then, the uniaxial tension experiment on 16 groups of carbon structural steels Q235 and Q345 were carried out at room temperature. Associate with the necking displacement measured by Aramis optical dynamic 3D strain measurement system, the parameter equation of necking surface profile was determined. The comparison results indicate that ChenChi formula is more accurate than Bridgman formula in calculating the necking stress distribution. Furthermore, to overcome the difficulty of measuring the radius curvature R in these formulas, an empirical formula of the geometric dimensions in the necking section was applied and the parameter was corrected based on the necking strain measured by Aramis system. As a result, the obtained equation in this study can provide an improved calculation method for the analysis of three-dimensional stress in necking and a reference for future research on the necking and ductile fracture of structural steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aretz, H. (2007). “Numerical analysis of diffuse and localized necking in orthotropic sheet metals.” International Journal of Plasticity, Vol. 23, No. 5, pp. 798–840, DOI: 10.1016/j.ijplas.2006.07.005.

    Article  MATH  Google Scholar 

  • Bae, D. (2004). “Experimental study on fatigue strength of in-plane welded gusset joints.” KSCE Journal of Civil Engineering, Vol. 8, No. 1, pp. 89–93, DOI: 10.1007/BF02829085.

    Article  MathSciNet  Google Scholar 

  • Besson, J., Cailletaud, G., Chaboche, J. L., and Forest, S. (2010). “Non-Linear mechanics of materials.” Solid Mechanics & Its Applications, Vol. 167, No. 12, pp. 341–369, DOI: 10.1007/978-90-481-3356-7.

    MATH  Google Scholar 

  • Bridgman, P. W. (1964). Studies in large plastic flow and fracture, Harvard University Press, Cambridge, DOI: 10.4159/harvard.9780674731349.

    Book  Google Scholar 

  • Cabezas, E. E. and Celentano, D. J. (2004). “Experimental and numerical analysis of the tensile test using sheet specimens.” Finite Elements in Analysis & Design, Vol. 40, No. 5, pp. 555–575, DOI: 10.1016/S0168-874X (03) 00096–9.

    Article  Google Scholar 

  • Chen, C. (1978). Study on metal fracture, Metallurgical Industry Press, Beijing, pp. 169–188.

    Google Scholar 

  • Chen, J. L., Li, Z. X., Shu, W., and Li, J. (2015). “Experimental study on dynamic mechanical behavior of Q345 steel under different strain rates.” Journal of Southeast University (Natural Science Edition), Vol. 45, No. 6, pp. 1145–1150, DOI: 10.3969/j.issn.1001-0505.2015.06.022.

    Google Scholar 

  • Di Sarno, L., Elnashai, A. S., and Nethercot, D. A. (2003). “Seismic performance assessment of stainless steel frames.” Journal of Constructional Steel Research, Vol. 59, No. 10, pp. 1289–1319, DOI: 10.1016/S0143-974X(03)00067-1.

    Article  Google Scholar 

  • Di Sarno, L., Elnashai, A. S., and Nethercot, D. A. (2008). “Seismic response of stainless steel braced frames.” Journal of Constructional Steel Research, Vol. 64, No. 7, pp. 914–925, DOI: 10.1016/j.jcsr.2008.01.027.

    Google Scholar 

  • Elnashai, A. S. and Di Sarno, L. (2008). “Fundamentals of earthquake engineering.” Wiley and Sons, DOI: 10.1002/9780470024867.ch2.

    Google Scholar 

  • Erice, B. and Gálvez, F. (2014). “A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion.” International Journal of Solids and Structures, Vol. 51, No. 1, pp. 93–110, DOI: 10.1016/j.ijsolstr.2013.09.015.

    Article  Google Scholar 

  • Gao, X., Zhang, G., and Roe, C. (2009). “A study on the effect of the stress state on ductile fracture.” International Journal of Damage Mechanics, Vol. 19, No. 1, pp. 75–94, DOI: 10.1177/1056789509101917.

    Google Scholar 

  • Gautam, S. S., Babu, R., and Dixit, P. M. (2010). “Ductile fracture simulation in the taylor rod impact test using continuum damage mechanics.” International Journal of Damage Mechanics, Vol. 20, No. 3, pp. 347–369, DOI: 10.1177/1056789509357119.

    Article  Google Scholar 

  • Gromada, M., Mishuris, G., and Öchsner, A. (2011). Correction formulae for the stress distribution in round tensile specimens at neck presence, Springer, Berlin, DOI: 10.1007/978-3-642-22134-7.

    Book  MATH  Google Scholar 

  • Hahn, G. T. and Rosenfield, A. R. (1975). “Metallurgical factors affecting fracture toughness of aluminum alloys.” Metallurgical Transactions A, Vol. 6, No. 4, pp. 653–668, DOI: 10.1007/BF02672285.

    Article  Google Scholar 

  • Jiang, W. (2016). Study of ductile fracture based on meso-damage mechanisms, PhD Thesis, Northwestern Polytechnical University, Xi’an, China.

    Google Scholar 

  • Joun, M., Choi, I., Eom, J., and Lee, M. (2008). “Finite element analysis of tensile testing with emphasis on necking.” Computational Materials Science, Vol. 41, No. 1, pp. 63–69, DOI: 10.1016/j.commatsci.2007.03.002.

    Article  Google Scholar 

  • Kim, S. and Lee, J. (2000). “Use of modal testing to identify damage on steel members.” KSCE Journal of Civil Engineering, Vol. 4, No. 2, pp. 75–82, DOI: 10.1007/BF02830820.

    Article  Google Scholar 

  • Li, Z. H., Shi, J. P., and Tang, A. M. (2013). “Experimental verification and analysis for Bridgman formula.” Chinese Journal of Applied Mechanics, Vol. 4, pp. 488–492, DOI: 10.11776/cjam.30.04.B112.

    Google Scholar 

  • Liang, X. (2010). “Localization conditions and diffused necking for damage plastic solids.” Engineering Fracture Mechanics, Vol. 77, No. 8, pp. 1275–1297, DOI: 10.1016/j.engfracmech.2009.12.008.

    Article  Google Scholar 

  • Ling, Y. (2004). “Uniaxial true stress-strain after necking.” Amp Incorporated Amp Journal of Technology, Vol. 5, No. 6, pp. 37–48.

    Google Scholar 

  • Mazloom, M. (2013). “Incorporation of steel frames in masonry buildings for reduction of earthquake-induced life loss.” KSCE Journal of Civil Engineering, Vol. 17, No. 4, pp. 736–745, DOI: 10.1007/s12205-013-0085-7.

    Article  Google Scholar 

  • Peter, W. H. (1982). “Digital imaging technique in experimental stress analysis.” Optical Engineering, Vol. 21, No. 3, pp. 427–431, DOI: 10.1117/12.7972925.

    Google Scholar 

  • Roy, G. L., Embury, J. D., Edwards, G., and Ashby, M. F. (1981). “A model of ductile fracture based on the nucleation and growth of voids.” Acta Metallurgica, Vol. 29, No. 8, pp. 1509–1522, DOI: 10.1016/0001-6160(81)90185-1.

    Article  Google Scholar 

  • Sarno, L. D., Elnashai, A. S., and Nethercot, D. A. (2003). “Seismic performance assessment of stainless steel frames.” Journal of Constructional Steel Research, Vol. 59, No. 10, pp. 1289–1319, DOI: 10.1016/S0143-974X(03)00067-1.

    Article  Google Scholar 

  • Senthil, K., Iqbal, M. A., Chandel, P. S., and Gupta, N. K. (2017). “Study of the constitutive behavior of 7075-T651 aluminum alloy.” International Journal of Impact Engineering, Vol. 108, pp. 171–190, DOI: 10.1016 /j.ijimpeng.2017.05.002.

    Article  Google Scholar 

  • Shin, H. S., Park, K. T., Lee, C. H., and Do, V. N. V. (2015). “Low temperature impact toughness of structural steel welds with different welding processes.” KSCE Journal of Civil Engineering, Vol. 19 No. 5, pp. 1431–1437, DOI: 10.1007/s12205-015-0042-8.

    Article  Google Scholar 

  • The Standardization Administration of China (2011). GBT228.1-2010 Metailic materials-Tensile testing-Part 1: Methord of test at room temperature, Standards Press of China, Beijing.

  • Tao, H., Zhang, N., and Tong, W. (2009). “An iterative procedure for determining effective stress–strain curves of sheet metals.” International Journal of Mechanics & Materials in Design, Vol. 5, No. 1, pp. 13–27, DOI: 10.1007/s10999-008-9082-2.

    Article  Google Scholar 

  • Yamaguchi, I. (2000). “A laser-speckle strain gauge.” Journal of Physics E Scientific Instruments, Vol. 14, No. 11, pp. 1270–1273, DOI: 10.1088/0022-3735/14/11/012.

    Article  Google Scholar 

  • Ye, Y. (1986). “Necking analysis of a cylindrical bar based on the line of segregation.” Acta Mechanica Sinica, Vol. 18, No. 1, pp. 48–58.

    MathSciNet  Google Scholar 

  • Zhang, Y. and Han L. (2014). The basis of micro-mechanics, Science Press, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjiang Xian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Xian, A., Mohamed, H.S. et al. A Simplified Analytical Solution for the Necking Semi-empirical Stresses based on Aramis System. KSCE J Civ Eng 23, 268–279 (2019). https://doi.org/10.1007/s12205-018-0307-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-0307-0

Keywords

Navigation