Skip to main content
Log in

A Data-driven Approach to Estimate the Probability of Pedestrian Flow Congestion at Transportation Bottlenecks

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In public gathering places, pedestrian flow congestion may happen in transportation bottlenecks. Limitations exist in the conventional judgment of congestion by considering the crowd density or the walking speed merely. In this paper, a data-driven mathematical approach based on Kernel Density Estimation (KDE) to analyze the probability of pedestrian flow congestion is proposed, which comprehensively considers the walking speed, the crowd density and the flow rate when pedestrians walk towards possible bottlenecks. With the case study of Nanjing metro station during rush hours, the advantages of non-parametric KDE compared with traditional parametric normal distribution estimation are analyzed and the optimal bandwidth for KDE is also discussed. The case study shows that the proposed method can obtain a more reliable quantitative assessment of congestion risk, as it overcomes the limitation of parametric estimation that relies on experience, and also avoids biased assessment of congestion that merely concerns single parameter of pedestrian flow. Finally, an assessment framework for dynamic congestion risk at bottlenecks is suggested. With this framework, the change of congestion situations of a monitored region can be mastered through data-driven approach, and thus the transformation of normal flowing to congestion of the crowd can be quantified through probabilistic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. K. (2009). “Kernel density estimation and k-means clustering to profile road accident hotspots. Accident analysis and prevention.” Accident Analysis & Prevention, Vol. 41, No. 3, pp. 359–364, DOI: 10.1016/j.aap.2008.12.014.

    Article  Google Scholar 

  • Bae, S., Choi, J. H., Kim, C., Hong, W. H., and Hong, S. R. (2016). “Development of new evacuation model (br-radiation model) through an experiment.” Journal of Mechanical Science & Technology, Vol. 30, No. 7, pp. 3379–3391, DOI: 10.1007/s12206-016-0647-y.

    Article  Google Scholar 

  • Chen, Q., Wynne, R. J., Goulding, P., and Sandoz, D. (2000). “The application of principal component analysis and kernel density estimation to enhance process monitoring.” Control Engineering Practice, Vol. 8, No. 5, pp. 531–543, DOI: 10.1016/S0967-0661(99) 00191–4.

    Article  Google Scholar 

  • Cheng, J. J., Jiang, R., Wong, S. C., Li, D., Guo, N., and Wang, W. (2017). Large-scale pedestrian flow experiments under high-density conditions, Cornell University Library, DOI: 1710.10263.

    Google Scholar 

  • Danese, M., Lazzari, M., and Murgante, B. (2008). “Kernel density estimation methods for a geostatistical approach in seismic risk analysis: The case study of potenza hilltop town (southern italy).” Lecture Notes in Computer Science, Vol. 5072, pp. 415–429, DOI: 10.1007/978-3-540-69839-5_31.

    Article  Google Scholar 

  • Guo, X., Chen, J., You, S., and Wei, J. (2013). “Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model.” Physica A: Statistical Mechanics & Its Applications, Vol. 392, No. 9, pp. 1994–2006, DOI: 10.1016/j.physa.2012.12.033.

    Article  Google Scholar 

  • Hänseler, F. S., Lam, W. H. K., Bierlaire, M., Lederrey, G., and Nikolic, M. (2017). “A dynamic network loading model for anisotropic and congested pedestrian flows.” Transportation Research Part BMethodological, Vol. 95, pp.149–168, DOI: 10.1016/j.trb.2016.10.017.

    Article  Google Scholar 

  • Helbing, D. and Molnár, P. (1998). “Social force model for pedestrian dynamics.” Physical Review E-Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, Vol. 51, No. 5, pp. 4282–4286, DOI: 10.1103/PhysRevE.51.4282.

    Google Scholar 

  • Hoogendoorn, S. P. and Daamen, W. (2005). “Pedestrian behavior at bottlenecks.” Transportation Science, Vol. 39, No. 2, pp. 147–159, DOI: 10.1287/trsc.1040.0102.

    Article  Google Scholar 

  • Huang, L., Chen, T., Wang, Y., and Yuan, H. (2015). “Congestion detection of pedestrians using the velocity entropy: A case study of love parade 2010 disaster.” Physica A-Statistical Mechanics & Its Applications, Vol. 440, pp. 200–209, DOI: 10.1016/j.physa.2015.08.013.

    Article  Google Scholar 

  • Jiang, Y. Q., Guo, R. Y., Tian, F. B., and Zhou, S. G. (2016). “Macroscopic modeling of pedestrian flow based on a second-order predictive dynamic model.” Applied Mathematical Modelling, Vol. 40, No. 23–24, pp. 9806–9820, DOI: 10.1016/j.apm.2016.06.041.

    Article  MathSciNet  Google Scholar 

  • Kholshevnikov, V. V., Shields, T. J., Boyce, K. E., and Samoshin, D. A. (2008). “Recent developments in pedestrian flow theory and research in russia.” Fire Safety Journal, Vol. 43, No. 2, pp. 108–118, DOI: 10.1016/j.firesaf.2007.05.005.

    Article  Google Scholar 

  • Lachapelle, A. and Wolfram, M. T. (2011). “On a mean field game approach modeling congestion and aversion in pedestrian crowds.” Transportation Research Part B-Methodological, Vol. 45, No. 10, pp. 1572–1589, DOI: 10.1016/j.trb.2011.07.011.

    Article  Google Scholar 

  • Lin, P., Ma, J., Liu, T. Y., Ran, T., Si, Y. L., and Li, T. (2016). “An experimental study of the ‘faster-is-slower’ effect using mice under panic.” Physica A: Statistical Mechanics & Its Applications, Vol. 452, pp. 157–166, DOI: 10.1016/j.physa.2016.02.017.

    Article  Google Scholar 

  • Lo, S. M., Fang, Z., Lin, P., and Zhi, G. S. (2004). “An evacuation model: The sgem package.” Fire Safety Journal, Vol. 39, No. 3, pp. 169–190, DOI: 10.1016/j.firesaf.2003.10.003.

    Article  Google Scholar 

  • Mahato, N. K., Klar, A., and Tiwari, S. (2017). “Particle methods for multi-group pedestrian flow.” Applied Mathematical Modelling, Vol. 53, pp. 447–461, DOI: 10.1016/j.apm.2017.08.02.

    Article  MathSciNet  Google Scholar 

  • Markose, S. M. (2013). “Systemic risk analytics: A data-driven multiagent financial network (mafn) approach.” Journal of Banking Regulation, Vol. 14, Nos. 3–4, pp. 285–305, DOI: 10.1057/jbr.2013.10.

    Article  Google Scholar 

  • Mtibaa, A., Harras, K. A., and Alnuweiri, H. (2014). “Malicious attacks in mobile device clouds: A data driven risk assessment.” Proceeding of 2014 23rd International Conference on Computer Communication and Networks (ICCCN). IEEE Xplore, New York, N.Y., pp. 1–8, DOI: 10.1109/ICCCN.2014.6911812.

    Google Scholar 

  • Nagatani, T. (2012). “Four species CA model for facing pedestrian traffic at rush hour.” Applied Mathematical Modelling, Vol. 36, No. 2, pp. 702–711, DOI: 10.1016/j.apm.2011.07.013.

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen, E. (1962). “On estimation of a probability density function and mode.” Annals of Mathematical Statistics, Vol. 33, No. 3, pp. 1065–1076, DOI: 10.1214/aoms/1177704472.

    Article  MathSciNet  MATH  Google Scholar 

  • Qu, Y., Gao, Z., Xiao, Y., and Li, X. (2014). “Modeling the pedestrian’s movement and simulating evacuation dynamics on stairs.” Safety Science, Vol. 70, No. 70, pp. 189–201, DOI: 10.1016/j.ssci.2014.05.016.

    Article  Google Scholar 

  • Rosenblatt, M. (1956). “Remarks on some nonparametric estimates of a density function.” Annals of Mathematical Statistics, Vol. 27, No. 3, pp. 832–837, DOI: 10.1214/aoms/1177728190.

    Article  MathSciNet  MATH  Google Scholar 

  • Wan, J., Sui, J., and Yu, H. (2014). “Research on evacuation in the subway station in china based on the combined social force model.” Physica A: Statistical Mechanics & Its Applications, Vol. 394, No. 4, pp. 33–46, DOI: 10.1016/j.physa.2013.09.060.

    Article  Google Scholar 

  • Wang, J., Zhang, L., Shi, Q., Yang, P., and Hu, X. (2015). “Modeling and simulating for congestion pedestrian evacuation with panic.” Physica A-Statistical Mechanics & Its Applications, Vol. 428, pp. 396–409, DOI: 10.1016/j.physa.2015.01.057.

    Article  Google Scholar 

  • Zeng, Y., Zhang, Z., Kusiak, A., Tang, F., and Wei, X. (2016). “Optimizing wastewater pumping system with data-driven models and a greedy electromagnetism-like algorithm.” Stochastic Environmental Research & Risk Assessment, Vol. 30, No. 4, pp. 1263–1275, DOI: 10.1007/s00477-015-1115-4.

    Article  Google Scholar 

  • Ziemer, V., Seyfried, A., and Schadschneider, A. (2016). “Congestion dynamics in pedestrian single-file motion.” Traffic and Granular Flow ’15, V. L. Knoop and W. Daamen, Ed., Springer, Cham, Switzerland, pp. 89–96.

    Chapter  Google Scholar 

  • Zuriguel, I., Parisi, D. R., Hidalgo, R. C., Lozano, C., Janda, A., Gago, P. A., Peralta, J. P., Ferrer, L. M., Pugnaloni, L. A., Clément, E., Maza, D., Pagonabarraga, I., and Angel Garcimartín, A. (2014). “Clogging transition of many-particle systems flowing through bottlenecks.” Scientific Reports, Vol. 4, pp. 7324–7324, DOI: 10.1038/srep07324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, M., Yan, W. et al. A Data-driven Approach to Estimate the Probability of Pedestrian Flow Congestion at Transportation Bottlenecks. KSCE J Civ Eng 23, 251–259 (2019). https://doi.org/10.1007/s12205-018-0063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-0063-1

Keywords

Navigation