Skip to main content
Log in

An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Numerical analyses precision performed by software, depends mostly on the accuracy of constitutive model. Therefore, the issue of accuracy has led to significant achievements in the development of constitutive models simulating the mechanical behavior of soils. However, these constitutive models often needs to a lot of parameters to be calibrated for each type of soil, and it’s considered as a disadvantage. especially, when the model parameters should be obtained through trial and error, the number of the parameters becomes a considerable issue. This paper presents an advanced constitutive model. Despite requiring much lower number of model parameters, it provides the same level of accuracy in compression of other advanced constitutive models for sand in literature. To show that the presented model achieved to this purpose, it is evaluated by various experimental data and some predictions made by two successful advanced models in literature. Consequently, it shows the presented model can accurately predict the sand behavior under different conditions despite using smaller number of parameters. Also, the accuracy of the presented model is on a par with advanced constitutive models available in the geotechnical engineering literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrianopoulos, K. I., Papadimitriou, A. G., and Bouckovalas, G. D. (2010). “Bounding surface plasticity model for the seismic liquefaction analysis of geostructures.” Soil Dynamics and Earthquake Engineering, Vol. 30, pp. 895–911, DOI: 10.1016/j.soildyn.2010.04.001.

    Article  MATH  Google Scholar 

  • Been, K. and Jefferies, M. G. (1985). “A state parameter for sand.” Geotechnique, Vol. 35, No. 2, pp. 99–112, DOI: 10.1680/geot.1985.35.2.99.

    Article  Google Scholar 

  • Castro, G. (1969). Liquefaction of sands, Dissertation, Harvard University, USA.

    Google Scholar 

  • Chen, C. and Zhang, J. (2013). “Constitutive modeling of loose sands under various stress paths.” International Journal of Geomechanics, Vol. 13, No. 1, pp. 1–8, DOI: 10.1061/(ASCE)GM.1943-5622.0000191.

    Article  Google Scholar 

  • Dafalias, Y. F. (1986). “Bounding surface plasticity. I: Mathematical foundation and hypoplasticity.” Journal of Engineering Mechanics, Vol. 112, No. 9, pp. 966–987, DOI: 10.1061/(ASCE)0733-9399 (1986)112:9(966).

    Article  Google Scholar 

  • Dafalias, Y. F. and Manzari, M. T. (2004). “Simple plasticity sand model accounting for fabric change effects.” Journal of Engineering Mechanics, Vol. 130, No. 6, pp. 622–634, DOI: 10.1061/(ASCE)0733-9399 (2004)130:6(622).

    Article  Google Scholar 

  • Dafalias, Y. F. and Popov, E. P. (1975). “A model of non-linearly hardening materials for complex loadings.” Acta Mechanica, Vol. 21, pp. 173–192, DOI: 10.1007/BF01181053.

    Article  MATH  Google Scholar 

  • Gajo, A. and Wood, D. M. (1999). “A kinematic hardening constitutive model for sand: The multiaxial formulation.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, No. 9, pp. 925–965, DOI: 10.1002/(SICI)1096-853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M.

    Article  MATH  Google Scholar 

  • Heidarzadeh, H., Oliaei, M., and Latifi, M. (2016). “Applying an appropriate cap in an elastoplastic model with open bounding and yield surfaces at high pressures.” Indian Journal of Science and Technology, Vol. 9, No. 18, pp. 1–7, DOI: 10.17485/ijst/2016/v9i18/93765.

    Google Scholar 

  • Hu, C., Liu, H., and Huang, W. (2012). “Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay.” Computers and Geotechnics, Vol. 44, pp. 34–47, DOI: 10.1016/j.compgeo.2012.03.009.

    Article  Google Scholar 

  • Huang, M., Liu, Y., and Sheng, D. (2011). “Simulation of yielding and stress–strain behavior of shanghai soft clay.” Computers and Geotechnics, Vol. 38. No. 3, pp. 341–353, DOI: 10.1016/j.compgeo.2010.12.005.

    Article  Google Scholar 

  • Iraji, A., Farzaneh, O., and Hosseininia, E. S. (2013). “A modification to dense sand dynamic simulation capability of Pastor–Zienkiewicz–Chan model.” Acta Geotechnica, Vol. 9, No. 2, pp. 343–353, DOI: 10.1007/s11440-013-0291-y.

    Article  Google Scholar 

  • Ishihara, K. (1993). “Liquefaction and flow Failure during earthquakes.” Geotechnique, Vol. 43, No. 3, pp. 351–415, DOI: 10.1680/geot.1993.43.3.351.

    Article  Google Scholar 

  • Khalili, N., Habte, M. A., and Valliappan, S. (2005). “A bounding surface plasticity model for cyclic loading of granular soils.” International Journal for Numerical Methods in Engineering, Vol. 63, No. 14, pp. 1939–1960, DOI: 10.1002/nme.1351.

    Article  MATH  Google Scholar 

  • Kim, T. and Jung, Y-H. (2016). “A new perspective on bounding surface plasticity: The moving projection origin.” KSCE Journal of Civil Engineering, pp. 1–7, DOI: 10.1007/s12205-016-0392-x.

    Google Scholar 

  • Kim, D. K. (2004). “A constitutive model with damage for cohesive soils.” KSCE Journal of Civil Engineering, Vol. 8, No. 5, pp. 513–519, DOI: 10.1007/BF02899578.

    Article  Google Scholar 

  • Kim, T., Han, J., and Cho, W. (2015). “Nonlinear stress-strain response of soft Chicago glacial clays.” KSCE Journal of Civil Engineering, Vol. 19, No. 4, pp. 1139–1149, DOI: 10.1007/s12205-014-0041-1.

    Article  Google Scholar 

  • Krieg, R. D. (1975). “A practical two-surface plasticity theory.” Journal of Applied Mechanics, Vol. 42, No. 3, pp. 641–646, DOI: 10.1115/1.3423656.

    Article  Google Scholar 

  • Kunnath, S., Heo, Y., and Mohle, J. (2009). “Nonlinear uniaxial material model for reinforcing steel bars.” Journal of Structural Engineering, Vol. 135, No. 4, pp. 333–343, DOI: 10.1061/(ASCE)0733-9445 (2009)135:4(335).

    Article  Google Scholar 

  • Lai, Y., Yang, Y., Chang, X., and Li, S. (2010). “Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics.” International Journal of Plasticity, Vol. 26, No. 10, pp. 1461–1484, DOI:10.1016/j.ijplas.2010.01.007.

    Article  MATH  Google Scholar 

  • Ling, H. I. and Liu, H. B. (2003). “Pressure-level dependency and densification behavior of sand through generalized plasticity model.” Journal of Engineering Mechanics, Vol. 129, No. 8, pp. 851–860, DOI: 10.1061/(ASCE)0733-9399(2003)129:8(851).

    Article  Google Scholar 

  • Ling, H. I. and Yang, S. T. (2006). “Unified sand model based on the critical state and generalized plasticity.” Journal of Engineering Mechanics, Vol. 132, No. 12, pp. 1380–1391, DOI: 10.1061/(ASCE) 0733-9399(2006)132:12(1380).

    Article  Google Scholar 

  • Mahan, M., Dafalias, Y. F., and Taiebat, M. (2011). “SANISTEEL: Simple anisotropic steel plasticity model.” Journal of Structural Engineering, Vol. 137, No. 2, pp. 185–194, DOI: 10.1061/(ASCE) ST.1943-541X.0000297.

    Article  Google Scholar 

  • Manzanal, D., Fernández-Merodo, J. A., and Pastor, M. (2011). “Generalized plasticity state parameter-based model for saturated and unsaturated soils, Part 1: Saturated state.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, No. 12, pp. 1347–1362, DOI: 10.1002/nag.961.

    Article  Google Scholar 

  • Manzari, M. T. and Dafalias, Y. F. (1997). “A critical state two-surface plasticity model for sands.” Geotechnique, Vol. 47, No. 2, pp. 255–272, DOI: 10.1680/geot.1997.47.2.255.

    Article  Google Scholar 

  • Papadimitriou, A. G. and Bouckovalas, G. D. (2002). “Plasticity model for sand under small and large cyclic strains: A multiaxial formulation.” Soil Dynamic sand Earthquake Engineering, Vol. 22, No. 3, pp. 191–204, DOI: 10.1016/S0267-7261(02)00009-X.

    Article  Google Scholar 

  • Pastor, M., Zienkiewicz, O. C., and Chan, A. H. C. (1990). “Generalized plasticity and the modeling of soil behavior.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, No. 3, pp. 151–190, DOI: 10.1002/nag.1610140302.

    Article  MATH  Google Scholar 

  • Pastor, M., Zienkiewicz, O. C., Xu, G. D., and Peraire, J. (1993). “Modelling of sand behaviour: Cyclic loading, anisotropy and localization.” Modern Approaches to Plasticity, Edited by Kolymbas D. Elsevier, pp. 469–492.

    Chapter  Google Scholar 

  • Rowe, P. W. (1962). “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 269, No. 1339, pp. 500–527.

    Google Scholar 

  • Seboong, O. h. (2007). “A new hardening function for bounding surface plasticity to predict soil behavior in overall strain ranges.” KSCE Journal of Civil Engineering, Vol. 11, No. 1, pp. 7–16, DOI: 10.1007/BF02823367.

    Article  Google Scholar 

  • Shen, C., Mizuno, E., and Usami, T. (1993). “A generalized two-surface model for structural steels under cyclic loading.” Structural Engineering/Earthquake Engineering, Vol. 10, No. 2, pp. 59–69, DOI: 10.2208/jscej.1993.471_23.

    Google Scholar 

  • Tatsuoka, F. (1972). A fundamental study of the behavior of sand by triaxial testing, PhD Thesis, University of Tokyo. Japan.

    Google Scholar 

  • Tatsuoka, F. and Ishihara, K. (1974a). “Yielding of sand in triaxial compression.” Soils and Foundation, Vol. 14, No. 2, pp. 63–76, DOI: 10.3208/sandf1972.14.2_63.

    Article  Google Scholar 

  • Tatsuoka, F. and Ishihara, K. (1974b). “Drained deformation of sand under cyclic stresses reversing direction.” Soils and Foundation, Vol. 14, No. 3, pp. 51–65, DOI: 10.3208/sandf1972.14.3_51.

    Article  Google Scholar 

  • Verdugo, R. and Ishihara, K. (1996). “The steady state of sandy soils.” Journal of the Japanese Geotechnical Society: Soils and Foundation, Vol. 36, No. 2, pp. 81–91, DOI: 10.3208/sandf.36.2_81.

    Google Scholar 

  • Wang, G. and Xie, Y. (2014). “Modified bounding surface hypoplasticity model for sands under cyclic loading.” Journal of Engineering Mechanics, Vol. 140, No. 1, pp. 91–101, DOI: 10.1061/(ASCE) EM.1943-7889.0000654.

    Article  Google Scholar 

  • Wang, Z. L., Dafalias, Y. F., Li, X. S., and Makdisi, F. I. (2002). “State pressure index for modeling sand behavior.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 6, pp. 511–519, DOI: 10.1061/(ASCE)1090-0241(2002)128:6(511).

    Article  Google Scholar 

  • Yin, Z. Y. and Chang, C. (2011). “Stress-dilatancy behavior for sand under loading and unloading conditions.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 37, No. 8, pp. 855–870, DOI: 10.1002/nag.1125.

    Article  Google Scholar 

  • Yin, Z. Y., Xu, Q., and Hicher, P. Y. (2013). “A simple critical-statebased double-yield-surface model for clay behavior under complex loading.” Acta Geotechnica, Vol. 8, No. 5, pp. 509–523, DOI: 10.1007/s11440-013-0206-y.

    Article  Google Scholar 

  • Yu, H. S., Khong, C., and Wang, J. (2007). “A unified plasticity model for cyclic behavior of clay and sand.” Mechanics Research Communications, Vol. 34, No. 2, pp. 97–114, DOI: 10.1016/j.mechrescom.2006.06.010.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Schreffer, B. A., and Shlomo, T. (1999). Computational Geomechanics: With Special Reference to Earthquake Engineering. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Oliaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H., Oliaei, M. An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters. KSCE J Civ Eng 22, 1109–1120 (2018). https://doi.org/10.1007/s12205-017-1037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1037-4

Keywords

Navigation