Skip to main content
Log in

Spatially Varying Small-strain Stiffness in Soils Subjected to K0 Loading

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS/Standard User’s Manual, Version 6.6 (2007). Habbitt, Karlsson & Sorenson, Inc., Pawtucke.

  • Ang, A. H. S. and Tang, W. H. (1975). Probability concept in engineering planning and design, Vol. 1. New York: Wiley and Sons.

    Google Scholar 

  • Antonellini, M. A., Aydin, A., and Pollard, D. D. (1994). “Microstructure of deformation bands in porous sandstones at Arches National Park, Utah.” Journal of Structural Geology, Vol. 16, pp. 941–959.

    Article  Google Scholar 

  • Antonellini, M. A., Aydin, A., Pollard, D. D., and D’Onfro, P. (1994). “Petrophysical study of faults in sandstones using petrographic image analysis and X-ray computerized tomography.” Pure and Applied Geophysics, Vol. 143, pp. 181–201.

    Article  Google Scholar 

  • Arévalo, R., Zuriguel, I., and Maza, D. (2009) “Topological properties of the contact network of granular materials.” International Journal of Bifurcation and Chaos, Vol. 19, pp. 695–702.

    Article  MATH  Google Scholar 

  • Barreto, D. and O’Sullivan, C. (2012). “The influence of interparticle friction and the intermediate stress ratio on soil response under generalised stress conditions.” Granular Matter, Vol. 14, No. 4, pp. 505–521.

    Article  Google Scholar 

  • Beacher, G. B. and Ingra, T. S. (1981). “Stochastic FEM in settlement predictions.” ASCE Journal of Soil Mechanics and Foundation Division, Vol. 107, No. 4, pp. 449–463.

    Google Scholar 

  • Behringer, R., Daniels, K. E., Majmudar, T. S., and Sperl, M. (2008). “Fluctuations, correlations, and transitions in granular materials: Statistical mechanics for a non-conventional system.” Philosophical Transactions of the Royal Society A, Vol. 366, No. 1865, pp. 493–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Cambou, B. (1975). “Applications of first-order uncertainty analysis in the finite elements method in linear elasticity.” Proc. Applications of Statistics and Probability in Soil and Structure Engineering, 2nd International Conference, Aachen, Germany, pp. 117–122.

    Google Scholar 

  • Ching, J. and Phoon, K. K. (2013). “Effect of element sizes in random field finite element simulations of soil shear strength.” Computers and Structures, Vol. 126, No. 15, pp. 120–134.

    Article  Google Scholar 

  • Ching, J. and Phoon, K. K. (2013). “Mobilized shear strength of spatially variable soils under simple stress states.” Structural Safety, Vol. 41, pp. 20–28.

    Article  Google Scholar 

  • Cho, G. C., Lee, J. S., and Santamarina, J. C. (2004). “Spatial variability in soils: high resolution assessment with electrical needle probe.” ASCE Journal of Geotechnical and Geoenvironmental Engineering. Vol. 130, No. 8, pp. 843–850.

    Article  Google Scholar 

  • Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model for granular assemblies.” Geotechnique, Vol. 29, pp. 47–65.

    Article  Google Scholar 

  • DeGroot, D. J. (1996). “Analyzing spatial variability of in-situ soil properties.” Proc. Uncertainty’ 96, Madison, pp. 210–238.

    Google Scholar 

  • DeGroot, D. J. and Beacher, G. B. (1993). “Estimating autocovariance of in-situ soil properties.” ASCE Journal of Geotechnical Engineering, Vol. 119, No. 1, pp. 147–166.

    Article  Google Scholar 

  • Díaz-Rodríguez, J. A. and Santamarina, J. C. (1999). “Thixotropy: The Case of Mexico City Soils.” XI Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Iguazu Falls, Brazil, Vol. 1, pp. 441–448.

    Google Scholar 

  • Duncan, J. M. and Chang, C. Y. (1970). “Nonlinear analysis of stress and strain in soils.” ASCE Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. 5, pp. 1629–1653.

    Google Scholar 

  • El-Kadi, A. I. and Williams, S. A. (2000). “Generating two-dimensional fields of auto-correlated, normally distributed parameters by the matrix decomposition technique.” Ground Water, Vol. 38, No. 4, pp. 530–532.

    Article  Google Scholar 

  • Fenton, G. A. (1994). “Error evaluation of three random field generators.” ASCE Journal of Engineering Mechanics, Vol. 120, No. 12, pp. 2478–2497.

    Article  Google Scholar 

  • Fenton, G. A. and Griffiths, D. V. (2005). “Three-dimensional probabilistic foundation settlement.” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 2, pp. 232–239.

    Article  Google Scholar 

  • Fenton, G. A. and Griffiths, D. V. (2008). Risk assessment in geotechnical engineering, John Wiley and Sons, New York.

    Book  Google Scholar 

  • Fernandez, A. L. (2000). Tomographic imaging the state of stress, PhD Thesis, Georgia Institute of Technology.

    Google Scholar 

  • Garzón, L. X., Caicedo, B., Sánchez-Silva, M., and Phoon, K. K. (2015). “Physical modelling of soil uncertainty.” International Journal of Physical Modelling in Geotechnics, Vol. 15, No. 1, pp. 19–34.

    Article  Google Scholar 

  • Griffiths, D. V. and Fenton, G. A. (2009). “Probabilistic settlement analysis by stochastic and random finite-element methods.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 11, pp. 1629–1637.

    Article  Google Scholar 

  • Grigoriu, M. (1984). “Crossing of non-Gaussian translation process.” ASCE Journal of Engineering Mechanics, Vol. 110, No. 4, pp. 610–620

    Article  Google Scholar 

  • Harr, M. E. (1987). Reliability based design in civil engineering, McGraw Hill, London.

    Google Scholar 

  • Hegazy, A. H., Mayne, P. M., and Rouhani, S. (1996). “Geostatistical assessment of spatial variability in piezocone tests.” Proc. Uncertainty’ 96, Madison, pp. 254–268.

    Google Scholar 

  • Huang, J. and Griffiths, D. V. (2015). “Determining an appropriate finite element size for modelling the strength of undrained random soils.” Computers and Geotechnics, Vol. 69, pp. 506–513.

    Article  Google Scholar 

  • Huang, J., Griffiths, D. V., and Fenton G. A. (2010). “Probabilistic Analysis of Coupled Soil Consolidation.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 3, pp. 417–430.

    Article  Google Scholar 

  • Hurley, R., Marteau, E., Ravichandran, G., and Andrade, J. E. (2014). “Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity.” Journal of the Mechanics and Physics of Solids, Vol. 63, pp. 154–166.

    Article  Google Scholar 

  • Jang, D. J., Frost, J. D., and Park, J. Y. (1999). “Preparation of epoxy impregnated sand coupons for image analysis.” ASTM Geotechnical Testing Journal, Vol. 22, No. 2, pp. 147–158.

    Google Scholar 

  • Jimenez, R. and Sitar, N. (2009). “The importance of distribution types on finite element analyses of foundation settlement.” Computers and Geotechnics, Vol. 36, pp. 474–483.

    Article  Google Scholar 

  • Jones, A. L., Kramer, S. L., and Arduino, P. (2002). Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering, PEER report 2002/16.

    Google Scholar 

  • Kulhawy, F. H. (1992). “On evaluation of static soil properties.” Stability and Performance of Slopes and Embankments II (GSP 31) ASCE, New York, pp. 95–115.

    Google Scholar 

  • Lacasse, S. and Nadim, F. (1996). “Uncertainties in characterizing soil properties.” Proc. Uncertainty’ 96, Madison, pp. 49–75.

    Google Scholar 

  • Majmudar, T. S. and Behringer, R. P. (2005). “Contact force measurements and stress-induced anisotropy in granular materials.” Nature, Vol. 435, pp. 1079–1082.

    Article  Google Scholar 

  • Muthuswamy, M. and Tordesillas, A. (2006). “How do interparticle friction, packing density and degree of polydispersity affect force propagation in particulate assemblies?” Journal of Statistical Mechanics: Theory and Experiment (opscience.iop.org/1742-5468/2006/09/P09003)

    MATH  Google Scholar 

  • Niemunis, A., Wichtmann, T., Petryna, Y., and Triantafyllidis, T. (2005). “Stochastic modelling of settlements due to cyclic loading for soilstructure interaction.” Proc. the 9th International Conference on Structural Safety and Reliability, ICOSSAR’05, Rome, Italy. Rotterdam, Millpress.

    Google Scholar 

  • Oda, M., Takemura, T., and Takahashi, M. (2004) “Microstructure in shear band observed by microfocus X-ray computed tomography.” Geotechnique, Vol. 54, No. 8, pp. 539–542.

    Article  Google Scholar 

  • Paice, G. M., Griffiths, D. V., and Fenton, G. A. (1996). “Finite element modeling of settlements on spatially random soil.” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 122, No. 9, pp. 777–779.

    Article  Google Scholar 

  • Peña, A. A., Hermann, H. J., and Lind, P. G. (2009). “Force chains in sheared granular media of irregular particles.” Powders and Grains 2009: Proceedings of the Sixth International Conference Micromechanics of Granular Media, Colorado, USA., pp. 321–324.

    Google Scholar 

  • Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Canadian Geotechnical Journal, Vol. 36, pp. 612–624.

    Article  Google Scholar 

  • Radjai, F., Wolf, D. E., Jean, M., and Moreau, J. J. (1998). “Bimodal character of stress transmission in granular packings,” Physical Review Letters, Vol. 80, pp. 61–64.

    Article  Google Scholar 

  • Ravi, V. (1992). “Statistical modeling of spatial variability of undrained strength.” Canadian Geotechnical Journal, Vol. 29, pp. 721–729.

    Article  Google Scholar 

  • Resendiz, D. and Herrera, I. (1969). “A probabilistic formulation of settlement control design.” Proc. 7 th ICSMFE, Vol. 2, Mexico, pp. 217–225.

    Google Scholar 

  • Rothenburg, L. and Bathurst, R. J. (1989). “Analytical study of induced anisotropy in idealized granular materials.” Geotechnique, Vol. 39, No. 4, pp. 601–614.

    Article  Google Scholar 

  • Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001). Soils and waves, John Wiley and Sons, New York.

    Google Scholar 

  • Santoso, A. M., Phoon, K. K., and Quek, S.-T. (2011). “Effects of soil spatial variability in rainfall-induced landslides.” Computers and Structures, Vol. 89, Nos. 11-12, pp. 893–900.

    Article  Google Scholar 

  • Sheng, Y., Lawrence, C. J., Briscoe, B. J., and Thorton, C. (2004). “Numerical studies of uniaxial powder compaction process by 3D DEM.” Engineering Computations, Vol. 21, pp. 304–317.

    Article  MATH  Google Scholar 

  • Song, K.-I., Cho, G. C., and Lee, S. W. (2011). “Effects of spatially variable weathered rock properties on tunnel behavior.” Probabilistic Engineering Mechanics Vol. 26, No. 3, pp. 413–426.

    Article  Google Scholar 

  • Suchomel, R. and Masin, D. (2011). “Probabilistic analyses of a strip footing on horizontally stratified sandy deposit using advanced constitutive model.” Computers and Geotechnics, Vol. 38, pp. 363–374.

    Article  Google Scholar 

  • Tang, W. (1979). “Probabilistic evaluation of penetration resistance.” ASCE Journal of Geotechnical Engineering, Vol. 105, No. 10, pp. 1173–1191.

    Google Scholar 

  • Tordesillas, A., O’Sullivan, P., and Walker, D. M. (2010). “Paramitha Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles.” Comptes Rendus Mécanique, Vol. 338, pp. 556–569.

    Article  Google Scholar 

  • Vanmarcke, E. H. (1977). “Probabilistic modeling of soil profiles.” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 103, No. 11, pp. 1227–1246.

    Google Scholar 

  • Vio, R., Andreani, P., and Wamsteker, W. (2001). “Numerical simulation of non-Gaussian random fields with prescribed correlation structure.” The Astronomical Society of the Pacific, Vol. 113, pp. 1009–1020.

    Article  Google Scholar 

  • Wu, T. H., Gale, S. M., Zhou, S. Z., and Geiger, E. C. (2011). “Reliability of settlement prediction—case history.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 4, pp. 312–322.

    Article  Google Scholar 

  • Yamazaki, F. and Shinozuka, M. (1988). “Digital generation of non-Gaussian stochastic fields.” ASCE Journal of Engineering Mechanics, Vol. 114, No. 7, pp. 1183–1197.

    Article  Google Scholar 

  • Zeitoun, D. G. and Baker, R. (1992). “A stochastic approach for settlement predictions of shallow foundations.” Geotechnique, Vol. 42, No. 4, pp. 617–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HK., Santamarina, J.C. Spatially Varying Small-strain Stiffness in Soils Subjected to K0 Loading. KSCE J Civ Eng 22, 1101–1108 (2018). https://doi.org/10.1007/s12205-017-0547-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0547-4

Keywords

Navigation