Skip to main content
Log in

Numerical modeling of creep degradation of natural soft clays under one-dimensional condition

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Creep degradation is a common phenomenon of natural soft clays. This paper focuses on developing a one-dimensional constitutive model considering the influence of bond degradation on the creep behavior for natural soft clays. First, conventional oedometer creep tests are studied and a creep based structure indicator ϖ denoting the difference between the creep coefficient of the reconstituted samples and that of intact samples is proposed. Then, the creep coefficient of intact clay is formulated by this indicator and the intrinsic creep coefficient corresponding to reconstituted clay. This formula is then incorporated into a one-dimensional creep model to describe the creep degradation behavior induced by bond degradation. The model parameters can be determined in a straightforward way from oedometer tests which leads to an easy application of the model for practice. Furthermore, coupled with the consolidation theory, the model is used to simulate oedometer tests at constant strain rate as well as long-term creep tests on sensitive Batiscan clay. The destructuration effects on the evolution of creep coefficient are analyzed. The comparisons between experimental and numerical results show that the proposed model can precisely describe the creep degradation behavior induced by destructuration of natural soft clay under one-dimensional loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bjerrum, L. (1967). “Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of building.” Géotechnique, Vol. 17, No. 2, pp. 81–118, DOI: 10.1680/geot.1967.17.2.83.

    Article  Google Scholar 

  • Burland, J. B. (1990). “On the compressibility and shear strength of natural clays.” Géotechnique, Vol. 40, No. 3, pp. 329–378, DOI: 10.1680/geot.1990.40.3.329.

    Article  Google Scholar 

  • Gens, A. and Nova, R. (1993). ‘Conceptual bases for a constitutive model for bonded soils and weak rocks.” In Proceedings of International Symposium on Hard Soils — Soft Rocks, Athens, pp. 485–494.

    Google Scholar 

  • Graham, J., Crooks, J. H. A., and Bell, A. L. (1983). “Time effects on the stress-strain behaviour of natural soft clays.” Géotechnique, Vol. 33, No. 3, pp. 327–340, DOI: 10.1680/geot.1983.33.3.327.

    Article  Google Scholar 

  • Hinchberger, S. D. and Qu, G. (2009). “Viscoplastic constitutive approach for rate-sensitive structured clays.” Canadian Geotechnical Journal, Vol. 46, No. 6, pp. 609–626, DOI: 10.1139/T08-133.

    Article  Google Scholar 

  • Jiang, M. J., Liu, J. D., and Yin, Z.-Y. (2014). “Consolidation and creep behaviors of two typical marine clays in China.” China Ocean Engineering, Vol. 28, No. 5, pp. 629–644, DOI: 10.1007/s13344-014-0050-3.

    Article  Google Scholar 

  • Karstunen, M. and Yin, Z.-Y. (2010). “Modelling time-dependent behaviour of Murro test embankment.” Géotechnique, Vol. 60, No. 10, pp. 735–749, DOI: 10.1680/geot.8.P.027.

    Article  Google Scholar 

  • Karstunen, M., Krenn, H., Wheeler, S. J. Koskinen, M., and Zentar, R. (2005). “The effect of anisotropy and destructuration on the behaviour of Murro test embankment.” ASCE International Journal of Geomechanics, Vol. 5, No. 2, pp. 87–97, DOI: 10.1061/(ASCE)1532-3641(2005)5:2(87).

    Article  Google Scholar 

  • Kavvadas, M. and Amorosi, A. (2000). “A constitutive model for structured soils.” Géotechnique, Vol. 50, No. 3, pp. 263–273, DOI: 10.1680/geot.2000.50.3.263.

    Article  Google Scholar 

  • Kim, Y. T. and Leroueil, S. (2001). “Modeling the viscoplastic behavior of clays during consolidation: Application to Berthierville clay in both laboratory and field conditions.” Canadian Geotechnical Journal, Vol. 38, No. 3, pp. 484–497, DOI: 10.1139/cgj-38-3-484.

    Article  Google Scholar 

  • Kimoto, S. and Oka, F. (2005). “An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behaviour.” Soils and Foundations, Vol. 45, No. 2, pp. 29–42.

    Google Scholar 

  • Kutter, B. L. and Sathialingam, N. (1992). “Elastic-viscoplastic modelling of the rate-dependent behaviour of clays.” Géotechnique, Vol. 42, No. 3, pp. 427–441, DOI: 10.1680/geot.1992.42.3.427.

    Article  Google Scholar 

  • Leoni, M., Karstunen, M., and Vermeer, P. A. (2008). “Anisotropic creep model for soft soils.” Géotechnique, Vol. 58, No. 3, pp. 215–226, DOI: 10.1680/geot.2008.58.3.215.

    Article  Google Scholar 

  • Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R. (1985). “Stress-strain-strain-rate relation for the compressibility of sensitive natural clays.” Géotechnique, Vol. 35, No. 2, pp. 159–180.

    Article  Google Scholar 

  • Leroueil, S., Roy, M., La Rochelle, P., Tavenas, F., and Brucy, F. (1979). “Behavior of destructured natural clays.” ASCE Journal of Geotechnical Engineering, Vol. 105, No. 6, pp. 759–778.

    Google Scholar 

  • Liu, M. D. and Carter, J. P. (1999). “Virgin compression of structured soils.” Geotechnique, Vol. 49, No. 1, pp. 43–57, DOI: 10.1680/geot.1999.49.1.43.

    Article  Google Scholar 

  • Mesri, G. and Godlewski, P. M. (1977). “Time and stress-compressibility interrelationship.” ASCE Journal of the Geotechnical Engineering, Vol. 103, No. 5, pp. 417–430.

    Google Scholar 

  • Perzyna, P. (1966). “Fundamental problems in viscoplasticity.” Advances in Applied Mechanics, Vol. 9, No. 2, pp. 243–377.

    Article  Google Scholar 

  • Rocchi, G., Fontana, M., and Da Prat, M. (2003). “Modelling of natural soft clay destruction processes using viscoplasticity theory.” Géotechnique, Vol. 53, No. 8, pp. 729–745, DOI: 10.1680/geot.2003.53.8.729.

    Article  Google Scholar 

  • Smith, P. R., Jardine, R. J., and Hight, D. W. (1992). “On the yielding of Bothkennar clay.” Géotechnique, Vol. 42, No. 2, pp. 257–274, DOI: 10.1680/geot.1992.42.2.257.

    Article  Google Scholar 

  • Stolle, D. F. E., Vermeer, P. A., and Bonnier, P. G. (1999). “A consolidation model for a creeping clay.” Canadian Geotechnical Journal, Vol. 36, No. 4, pp.754–759, DOI: 10.1139/cgj-36-4-754.

    Article  MATH  Google Scholar 

  • Tavenas, F. J. P., Leblond, P., and Leroueil, S. (1983). “The permeability of natural soft clay, part II. Permeability characteristics.” Canadian Geotechnical Journal, Vol. 20, No. 4, pp. 645–660, DOI: 10.1139/t84-082.

    Article  Google Scholar 

  • Vermeer, P. A., Stolle, D. F. A., and Bonnier, P. G. (1997). “From the classical theory of secondary compression to modern creep analysis.” In Proceedings of the 9th International Conference on Computer Methods and Advances in Geomechanics, Wuhan/China, Vol.4, Rotterdam: Balkema, pp. 2469–2478.

    Google Scholar 

  • Wang, L. Z. and Yin, Z.-Y. (2014) “Stress-dilatancy of natural soft clay under undrained creep condition.” ASCE International Journal of Geomechanics, A4014002, DOI: 10.1061/(ASCE)GM.1943-5622.0000271.

    Google Scholar 

  • Yao, Y. P., Gao, Z. W., Zhao, J. D., and Wan, Z. (2012). “Modified UH model: Constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope.” ASCE, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 7, pp. 860–868, DOI: 10.1061/(ASCE)GT.1943-5606.0000649.

    Article  Google Scholar 

  • Yao, Y. P., Hou, W., and Zhou, A. N. (2009). “UH model: Three-dimensional unified hardening model for overconsolidated clays.” Geotechnique, Vol. 59, No. 5, pp. 451–469, DOI: 10.1680/geot.2007.00029.

    Article  Google Scholar 

  • Yao, Y. P., Kong, L. M., and Zhou, A. N. (2014). “Time-dependent unified hardening model: Three-dimensional elasto-visco-plastic constitutive model for clays.” ASCE, Journal of Engineering Mechanics, Vol. 141, No. 6, 04014162, DOI: 10.1061/(ASCE)EM.1943-7889.0000885.

    Article  Google Scholar 

  • Yin, J. H. (1999). “Non-linear creep of soils in oedometer tests.” Géotechnique, Vol. 49, No. 5, pp. 699–707, DOI: 10.1680/geot.1999.49.5.699.

    Article  Google Scholar 

  • Yin, J. H. and Graham, J. (1989). “Viscous elastic plastic modelling of one-dimensional time dependent behaviour of clays.” Canadian Geotechnical Journal, Vol. 26, No. 2, pp. 199–209, DOI: 10.1139/t89-029.

    Article  Google Scholar 

  • Yin, Z.-Y. and Hicher, P. Y. (2008). “Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 12, pp. 1515–1535, DOI: 10.1002/nag.684.

    Article  MATH  Google Scholar 

  • Yin, Z.-Y. and Karstunen, M. (2011). “Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration.” Acta Mechanica Solida Sinica, Vol. 24, No. 3, pp. 216–230.

    Article  Google Scholar 

  • Yin, Z.-Y. and Wang, J. H. (2012). “A one-dimensional strain-rate based model for soft structured clays.” Science China Technological Sciences, Vol. 55, No. 1, pp. 90–100, 10.1007/s11431-011-4513-y.

    Article  Google Scholar 

  • Yin, Z.-Y., Chang, C. S., Karstunen, M., and Hicher, P. Y. (2010b). “An anisotropic elastic viscoplastic model for soft soils.” International Journal of Solids and Structures, Vol. 47, No. 5, pp. 665–677, DOI: 10.1016/j.ijsolstr.2009.11.004.

    Article  MATH  Google Scholar 

  • Yin, Z.-Y., Hattab, M., and Hicher, P. Y. (2011c). “Multiscale modeling of a sensitive marine clay.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, pp. 1682–1702, DOI: 10.1002/nag.977.

    Article  Google Scholar 

  • Yin, Z.-Y., Karstunen, M., and Hicher, P. Y. (2010a). “Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays.” Soils and Foundations, Vol. 50, No. 2, pp. 203–214.

    Article  Google Scholar 

  • Yin, Z.-Y., Karstunen, M., Chang, C. S., and Koskinen, M. (2011b). “Modeling time-dependent behavior of natural soft clay.” Journal of Geotechnical and Geoenvironment Engineering, Vol. 137, No. 11, pp. 1103–1113, DOI: 10.1061/(ASCE)GT.1943-5606.0000527.

    Article  Google Scholar 

  • Yin, Z.-Y., Karstunen, M., Wang, J. H., and Yu, C. (2011a). “Influence of features of natural soft clay on the behavior of embankment.” Journal of Central South University of Technology, Vol. 18, pp. 1667–1676, DOI: 10.1007/s11771-011-0887-z.

    Article  Google Scholar 

  • Yin, Z.-Y., Xu, Q., and Yu, C. (2012). “Elastic viscoplastic modeling for natural soft clays considering nonlinear creep.” International Journal of Geomechanics, DOI: 10.1061/(ASCE)GM.1943-5622.0000284.

    Google Scholar 

  • Yin, Z.-Y., Yin, J. H., and Huang, H. W. (2015). “Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: Experiments and modeling.” Marine Georesources & Geotechnology, Vol. 33, No. 1, pp. 79–91, DOI: 10.1080/1064119X.2013.797060.

    Article  Google Scholar 

  • Yin, Z.-Y., Zhu, Q. Y., Yin, J. H., and Ni, Q. (2014). “Stress relaxation coefficient and formulation for soft soils.” Géotechnique Letters, Vol. 4, pp. 45–51, DOI: 10.1680/geolett.13.00070.

    Article  Google Scholar 

  • Zeng, L. L., Hong, Z. S., Liu, S. Y., and Chen, F. Q. (2012). “Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays.” Chinese Journal of Geotechnical and Engineering, Vol. 34, No. 8, pp. 1496–1500.

    Google Scholar 

  • Zhu, Q. Y., Yin, Z.-Y., Hicher, P. Y. Shen, S. L. (2015). “Non-linearity of one-dimensional creep characteristics of soft clays.” Acta Geotechnica, DOI: 10.1007/s11440-015-0411-y.

    Google Scholar 

  • Zhu, Q. Y., Yin, Z.-Y., Xu, C. J, Yin, J. H., and Xia, X. H. (2015). “Uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays.” Journal of Central South University, Vol. 22, No. 1, pp. 296–302, DOI: 10.1007/s11771-015-2521-y.

    Article  Google Scholar 

  • Zhu, Q. Y., Jin, Y. F., Yin, Z.-Y., and Hicher, P. Y. (2013). “Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China.” Journal of Zhejiang University-SCIENCE A, Vol. 14, No. 11, pp. 767–777, DOI: 10.1631/jzus.A1300156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, QY., Yin, ZY., Zhang, DM. et al. Numerical modeling of creep degradation of natural soft clays under one-dimensional condition. KSCE J Civ Eng 21, 1668–1678 (2017). https://doi.org/10.1007/s12205-016-1026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1026-z

Keywords

Navigation