Skip to main content
Log in

Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In the last four decades, many equations have been proposed to estimate the shear strength of Steel Fiber Reinforced Concrete (SFRC) beams. However, in terms of accuracy and uniformity of the prediction, there is considerable diversity between existing test results and researchers’ predictions. In this study, by using the basic principle of mechanics and considering the slenderness effect of SFRC beams without stirrups, a new design expression is proposed for the shear strength of SFRC beams. The proposed equation and researchers’ predictions are compared to the test results of 170 SFRC beams without stirrups. It is found that the proposed equation shows good agreement with regard to the existing test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACI Committee 318 (2008). Building code requirements for structural concrete, American Concrete Institute, Farmington Hills, Mich.

    Google Scholar 

  • ACI Committee 544 (1986). State of the art report on fiber reinforced concrete (AC1 544.1R-86), ACI Manual of Concrete Practice, Detroit.

    Google Scholar 

  • Adebar, P., Mindess, S., St.-Pierre, D., and Olund, B. (1997). “Shear tests of fiber concrete beams without stirrups.” ACI Structural Journal, Vol. 94, No. 1, pp. 68–76.

    Google Scholar 

  • Arslan, G. (2008). “Shear strength of reinforced concrete beams with stirrups.” Materials and Structures, Vol. 41, No. 1, pp. 113–122.

    Article  Google Scholar 

  • Arslan, G. (2010). “Shear strength of reinforced concrete slender beams.” Proceedings of the ICE — Structures and Buildings, Vol. 163, No. 3, pp. 195–205.

    Article  MathSciNet  Google Scholar 

  • Arslan, G. (2012). “Diagonal tension failure of RC beams without stirrups.” Journal of Civil Engineering and Management, Vol. 18, No. 2, pp. 217–226.

    Article  MathSciNet  Google Scholar 

  • Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992). “Shear behavior of high-strength fiber reinforced concrete beams.” ACI Structural Journal, Vol. 89, No. 2, pp. 176–184.

    Google Scholar 

  • Balaguru, P. and Najm, H. (2004). “High-performance fiber-reinforced concrete mixture proportions with high fiber volume fractions.” ACI Material Journal, Vol. 101, No. 4, pp. 281–286.

    Google Scholar 

  • Balendran, R. V., Zhou, F. P., Nadeem, A., and Leung, Y. T. (2002). “Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete.” Building and Environment, Vol. 37, No. 12, pp. 1361–1367.

    Article  Google Scholar 

  • Batson, G., Jenkins, E., and Spatney, R. (1972). “Steel fibers as shear reinforcement in beams.” ACI Journal Proceed, Vol. 69, No. 10, pp. 640–644.

    Google Scholar 

  • Bazant, Z. P. and Kim, J. K. (1984). “Size effect in shear failure of longitudinally reinforced beams.” ACI Structural Journal, Vol. 81, No. 5, pp. 456–468.

    Google Scholar 

  • Bentur, A. and Mindess, S. (1990). Fibre reinforced cementitious composites, Elsevier Applied Science, London.

    Google Scholar 

  • Choi, K. K., Park, H.-G., and Wight, J. K. (2007). “Shear strength of steel fiber-reinforced concrete beams without web reinforcement.” ACI Structural Journal, Vol. 104, No. 1, pp. 12–21.

    Google Scholar 

  • Cladera, A. and Mari, A. R. (2005). “Experimental study on high-strength concrete beams failing in shear.” Engineering Structures, Vol. 27, No. 10, pp. 1519–1527.

    Article  Google Scholar 

  • Collins, M. P. and Kuchma, D. A. (1999). “How safe are our large, lightly reinforced concrete beams, slabs, and footings.” ACI Structural Journal, Vol. 96, No. 4, pp. 482–490.

    Google Scholar 

  • Comité Euro-International du Bèton (CEB-FIP) (1990). CEB-FIP model code, Bulletin d’Information No 213–214, Thomas Telford Services. London 1993.

    Google Scholar 

  • CSA Committee A23.3 (2004). Design of concrete structures, CSA A23.3-04. Rexdale, Ontario, Canada: Canadian Standards Association.

    Google Scholar 

  • Cucchiara, C., Mendola, L. L., and Papia, M. (2004). “Effectiveness of stirrups and steel fibers as shear reinforcement.” Cement and Concrete Composites, Vol. 26, No. 7, pp. 777–786.

    Article  Google Scholar 

  • Ding, Y., You, Z., and Jalali, S. (2011). “The composite effect of steel fibres and stirrups on the shear behaviour of beams using selfconsolidating concrete.” Engineering Structures, Vol. 33, No. 1, pp. 107–117.

    Article  Google Scholar 

  • Dinh, H. H., Para-Montesinos, G. J., and Wight, J. K. (2010). “Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement.” ACI Structural Journal, Vol. 107, No. 5, pp. 597–606.

    Google Scholar 

  • Dinh, H. H., Parra-Montesinos, G. J., and Wight, J. K. (2011). “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement.” Journal of Structural Engineering, ASCE, Vol. 137, No.10, pp. 1039–1051.

    Article  Google Scholar 

  • Dupont, D. and Vandewalle, L. (2003). Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers, ACI SP216-06, pp. 79–94.

    Google Scholar 

  • Eurocode 2 (2004). Design of concrete structures, Part 1-1: General rules and rules for buildings, EN 1992-1-1, CEN, Brussels.

    Google Scholar 

  • Furlan, S. and De Hanai, J. B. (1997). “Shear behaviour of fiber reinforced concrete beams.” Cement and Concrete Composites, Vol. 19, No. 4, pp. 359–366.

    Article  Google Scholar 

  • Gandomi, A. H., Alavi, A. H., and Yun, G. J. (2011). “Nonlinear modeling of shear strength of SFRC beams using linear genetic programming.” Structural Engineering and Mechanics, Vol. 38, No. 1, pp. 1–25.

    Article  Google Scholar 

  • Hannant, D. J. (1978). Fibre cements and fibre concretes, Wiley-Interscience, Chichester.

    Google Scholar 

  • Imam, M., Vandewalle, L., and Mortelmans, F. (1994). “Shear capacity of steel fiber high-strength concrete beams.” High Perform Concrete, SP 149, American Concrete Institute, pp. 227–241.

    Google Scholar 

  • Imam, M., Vandewalle, L., Mortelmans, F., and Van Gemert, D. (1997). “Shear domain of fibre reinforced high-strength concrete beams.” Engineering Structures, Vol. 19, No. 9, pp.738–747.

    Article  Google Scholar 

  • Junior, S. F. and Hanai, B. (1997). “Shear behaviour of fiber reinforced concrete beams.” Cement and Concrete Composites, Vol. 19, No. 4, pp. 359–366.

    Article  Google Scholar 

  • Kadir, M. R. A. and Saeed, J. A. (1986). “Shear strength of fiber reinforced concrete beams.” Journal of Engineering and Tecknology, Vol. 4, No. 3, pp. 98–112.

    Google Scholar 

  • Khuntia, M. and Stojadinovic, B. (2001). “Shear strength of reinforced concrete beams without transverse reinforcement.” ACI Structural Journal, Vol. 98, No. 5, pp. 648–656.

    Google Scholar 

  • Khuntia, M., Stojadinovic, B., and Goel, S. C. (1999). “Shear strength of normal and high strength fiber reinforced concrete beams without stirrups.” ACI Structural Journal, Vol. 96, No. 2, pp. 282–289.

    Google Scholar 

  • Kim, J. K. and Park, Y. D. (1994). “Shear strength of reinforced high strength concrete beams without web reinforcement.” Magazine of Concrete Research, Vol. 46, No. 166, pp. 7–16.

    Article  Google Scholar 

  • Kim, J.-K. and Park, Y.-D. (1996). “Prediction of shear strength of reinforced concrete beams without web reinforcement.” ACI Materials Journal, Vol. 93, No. 3, pp. 213–222.

    Google Scholar 

  • Kwak, Y. K., Eberhard, M. O., Kim, W. S., and Kim, J. (2002). “Shear strength of steel fiber-reinforced concrete beams without stirrups.” ACI Structural Journal, Vol. 99, No. 4, pp. 530–538.

    Google Scholar 

  • Li, V. C., Stang, H., and Krenchel, H. (1993). “Micromechanics of crack bridging in fibre-reinforced concrete.” Materials and Structures, Vol. 26, No. 8, pp. 486–494.

    Article  Google Scholar 

  • Li, V. C., Wang, S., and Wu, C. (2001). “Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composites (PVAECC).” ACI Material Journal, Vol. 98, No. 6, pp. 483–92.

    Google Scholar 

  • Li, V. C., Ward, R., and Hamza, A. M. (1992). “Steel and synthetic fibers as shear reinforcement.” ACI Materials Journal, Vol. 89, No. 5, 499–508.

    Google Scholar 

  • Lim, D. H. and Oh, B. H. (1999). “Experimental and theoretical investigation on the shear of steel fiber reinforced concrete beams.” Engineering Structures, Vol. 21, No. 10, pp. 937–944.

    Article  Google Scholar 

  • Lim, T. Y., Paramasivam, P., and Lee, S. L. (1987). “Shear and moment capacity of reinforced steel-fiber-concrete beams.” Magazine of Concrete Research, Vol. 39, No. 140, pp. 148–160.

    Article  Google Scholar 

  • Mansur, M. A., Ong, K. C. G., and Paramasivam, P. (1986). “Shear strength of fibrous concrete beams without stirrups.” Journal of Structural Engineering, ASCE, Vol. 112, No. 9, pp. 2066–2079.

    Article  Google Scholar 

  • Naaman, A. E. (2003). “Engineered steel fibers with optimal properties for reinforcement of cement composites.” Journal of Advanced Concrete Technology, Vol. 1, No. 3, pp. 241–252.

    Article  Google Scholar 

  • Narayanan, R. and Darwish, I. Y. S. (1987). “Use of steel fibers as shear reinforcement.” ACI Structural Journal, Vol. 84, No. 3, pp. 216–227.

    Google Scholar 

  • Nelson, P. K., Li V. C., and Kamada, T. (2002). “Fracture toughness of microfiber reinforced cement composites.” ASCE Journal Materials in Civil Engineering, Vol. 14, No. 15, pp. 384–391.

    Article  Google Scholar 

  • Niyogi, S. K. and Dwarakanathan, G. I. (1985). “Fiber reinforced beams under moment and shear.” Journal of Structural Engineering, ASCE, Vol. 111, No. 3, pp. 516–527.

    Article  Google Scholar 

  • Para-Montesinos, G., Wight, J. K., Dinh, H., Libbrecht, A., and Padilla, C. (2006). Shear strength of fiber reinforced concrete beams without stirrups, Report No. UMCEE 06-04, University of Michigan, Ann Arbor, MI, p. 39.

    Google Scholar 

  • Park, H.-G., Choi, K.-K., and Wight, J. K. (2006). “Strain-based shear strength model for slender beams without web reinforcement.” ACI Structural Journal, Vol. 103, No. 6, pp. 783–793.

    Google Scholar 

  • RILEM TC 162-TDF (2003). “Test and design methods for steel fibre reinforced concrete — σ-ɛ design method — Final Recommendation.” Materials and Structures, Vol. 36, No. 8, pp. 560–567.

    Article  Google Scholar 

  • Rosenbusch, J. and Teutsch, M. (2002). Trial beams in shear, Brite/ Euram Project 97-4163, Final Report, Sub Task 4.2, Technical University of Braunschweig.

    Google Scholar 

  • Shah, S. P. (1991). “Do fibers increase the tensile strength of cementbased matrixes?.” ACI Material Journal, Vol. 88, No. 6, pp. 595–602.

    Google Scholar 

  • Sharma, A. K. (1986). “Shear strength of steel fiber reinforced concrete beams.” ACI Journal Proceed., Vol. 83, No. 4, pp. 624–628.

    Google Scholar 

  • Shin, S. W., Oh, J. G., and Ghosh, S. K. (1994). Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers, Fiber Reinforced Concrete: Developments and Innovations, SP-142, J. I. Daniel and S. P. Shah, ACI, pp. 181–200.

    Google Scholar 

  • Swamy, R. N. and Bahia, H. M. (1979). “Influence of fiber reinforcement on the dowel resistance to shear.” ACI Structural Journal, Vol. 76, No. 2, pp. 327–355.

    Google Scholar 

  • Swamy, R. N. and Bahia, H. M. (1985). “The effectiveness of steel fibers as shear reinforcement.” Concrete International, Vol. 7, No. 3, pp. 35–40.

    Google Scholar 

  • Swamy, R. N., Jones R., and Chiam, A. T. P. (1993). “Influence of steel fibers on the shear resistance of lightweight concrete I-beams.” ACI Structural Journal, Vol. 90, No. 1, pp. 103–114.

    Google Scholar 

  • Tan, K. H., Murugappan, K., and Paramasivam, P. (1993). “Shear behavior of steel fiber reinforced concrete beams.” ACI Structural Journal, Vol. 90, No. 1, pp. 3–11.

    Google Scholar 

  • TS500 (2000). Requirements for design and construction of reinforced concrete structures, Turkish Standards Institute, Ankara (in Turkish).

    Google Scholar 

  • Uomoto, T., Weerarathe, R. K., Furukoshi, H., and Fujino, H. (1986). Shear strength of reinforced concrete beams with fiber reinforcement, Proceedings, Third Internal RILEM Symposium on Developments in Fiber Reinforced Cement and Concrete, Sheffield, RILEM Technical Committee 49-TFR, Sheffield University Press Unit, Sheffield, pp. 553–562.

    Google Scholar 

  • Wang, Z. L., Wu, L. P., and Wang, J. G. (2010). “A study of constitutive relation and dynamic failure for SFRC in compression.” Construction and Building Materials, Vol. 24, No. 8, pp. 1358–1363.

    Article  Google Scholar 

  • Yakoub, H. E. (2011). “Shear stress prediction: Steel fiber-reinforced concrete beams without stirrups.” ACI Structural Journal, Vol. 108, No. 3, pp. 304–314.

    Google Scholar 

  • Zararis, P. D. (2003). “Sehar strength and minimum shear reinforcement of reinforced concrete slender beams.” ACI Structural Journal, Vol. 100, No. 2, pp. 203–214.

    Google Scholar 

  • Zararis, P. D. and Papadakis, G. C. (2001). “Diagonal shear failure and size effect in RC Beams without web reinforcement.” Journal of Structural Engineering, ASCE, Vol. 127, No. 7, pp. 733–742.

    Article  Google Scholar 

  • Zsutty, T. C. (1971). “Shear strength prediction for separate categories of simple beam tests.” ACI Journal Proceed, Vol. 68, No. 2, pp. 138–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guray Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, G. Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams. KSCE J Civ Eng 18, 587–594 (2014). https://doi.org/10.1007/s12205-014-0320-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0320-x

Keywords

Navigation