Skip to main content
Log in

A meshless Cracking Particles Approach for ductile fracture

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

An Erratum to this article was published on 18 August 2016

Abstract

We present a meshless Crack Particles Approach (CPM) for ductile material failure. Material failure is modeled by enrichment of the meshless shape functions in the CPM where the crack is described as set of plane crack facets passing through the entire domain of influence of the meshless node. The CPM does not require any geometrical description of the crack surface. The Gurson-Tvergaard-Needleman (GTN) model is used to describe the constitutive material in the intact continuum. The onset of unstable material behavior is modeled by the loss-of-material-stability criterion. The approach is applied to two benchmark examples demonstrating the excellent accuracy of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Areias, P. M. A. and Rabczuk, T. (2010). “Smooth finite strain plasticity with nonlocal pressure support.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 106–134.

    MATH  Google Scholar 

  • Areias, P. and Rabczuk, T. (2013). “Finite strain fracture of plates and shells with configurational forces and edge rotation.” International Journal for Numerical Methods in Engineering, Vol. 94, No. 12, pp. 1099–1122.

    Article  MathSciNet  Google Scholar 

  • Ball, J. M. (1980). “Strict convexity, strong ellipticity, and regularity in the calculus of variations.” Math. Proc. Comb. Phil. Soc., Vol. 87, No. 1, pp. 501–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Bazant, Z. P. and Oh, B. H. (1983). “Crack band theory for fracture in concrete.” Materials and Structures, Vol. 16, No. 12, pp. 155–177.

    Google Scholar 

  • Belytschko, T. and Black, T. (1999). “Elastic crack growth in finite elements with minimal remeshing.” International Journal for Numerical Methods in Engineering, Vol. 45, No. 7, pp. 601–620.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1994). “Element-free galerkin methods.” International Journal for Numerical Methods in Engineering, Vol. 37, No. 4, pp. 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1995). “Crack propagation by elementfree galerkin methods.” Engineering Fracture Mechanics, Vol. 51, No. 5, pp. 295–315.

    Article  Google Scholar 

  • Belytschko, T. and Tabbara, M. (1996). “Dynamic fracture using elementfree galerkin methods.” International Journal for Numerical Methods in Engineering, Vol. 39, No. 12, pp. 923–938.

    Article  MATH  Google Scholar 

  • Bordas, S., Natarajan, S., Dal Pont, S., Rabczuk, T., Kerfriden, P., Mahapatra, D. R., Noel, D., and Gao, Z. (2011). “On the performance of strain smoothing for enriched finite element approximations (xfem/gfem/pufem).” International Journal for Numerical Methods in Engineering, Vol. 86, Nos. 4–5, pp. 637–666.

    Article  MATH  Google Scholar 

  • Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Natarajan, S., Bog, T., Nguyen V. P., Quan D. M., and Hiep, N. V. (2010). “Strain smoothing in fem and xfem.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1419–1443.

    Article  Google Scholar 

  • Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment.” Engineering Fracture Mechanics, Vol. 75, No. 5, pp. 943–960.

    Article  Google Scholar 

  • Brewer, J. C. and Lagace, P. A. (1988). “Quadratic stress criterion for initiation and delamination.” Journal of Composite Materials, Vol. 22, No. 1, pp. 1141–1155.

    Article  Google Scholar 

  • Camacho, G. T. and Otiz, M. (1996). “Computational modelling of impacte damage and penetration of brittle and ductile solids.” International Journal of Solids and Structures, Vol. 33, Nos. 29-22, pp. 2899–2938.

    Article  Google Scholar 

  • Cavin, P., Gravouil, A., Lubrecht, A., and Combescure, A. (2005). “Automatic energy conserving space time refinement for linear dynamic structural problems.” International Journal for Numerical Methods in Engineering, Vol. 64, No. 5, pp. 304–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Chau-Dinh, T., Zi, G., Lee, P. S., Song, J., and Rabczuk, T. (2012). “Phantomnode method for shell models with arbitrary cracks.” Computers & Structures, Vol. 92–93, pp. 242–256.

    Article  Google Scholar 

  • Chen, L., Rabczuk, T., Liu, G. R., Zeng, K. Y., Kerfriden, P., and Bordas, S. (2012). “Extended finite element method with edge-based strain smoothing (esm-xfem) for linear elastic crack growth.” Computer Methods in Applied Mechanics and Engineering, Vols. 209–212, No. 4, pp. 250–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, L. and Zhang, Y. (2010). “Dynamic fracture analysis using discrete cohesive crack method.” International Journal for Numerical Methods in Biomedical Engineering, Vol. 26, No. 11, pp. 1493–1502.

    Article  MATH  Google Scholar 

  • Chu, C. C. and Needleman, A. (1980). “Void nucleation effects in biaxially stretched sheets.” Journal of Engineering Materials and Technology, Vol. 102, pp. 249–256.

    Article  Google Scholar 

  • Dong, Y., Wu, S., Xu, S. S., Zhang, Y., and Fang, S. (2010). “Analysis of concrete fracture using a novel cohesive crack method.” Applied Mathematical Modelling, Vol. 34, No. 12, pp. 4219–4231.

    Article  MATH  Google Scholar 

  • Fleming, M., Chu, Y. A., Moran, B., and Belytschko, T. (1997). “Enriched element-free galerkin methods for crack tip fields.” International Journal for Numerical Methods in Engineering, Vol. 40,Issue 8, 1483–1504.

    Article  MathSciNet  Google Scholar 

  • Gurson, A. L. (1977). “Continuum theory of ductile rupture by void nucleation and growth: Part 1-yield criteria and flow rules for porous ductile media.” ASME Journal of Engineering Materials and Technology, Vol. 99, No. 2, pp. 343–355.

    Google Scholar 

  • Hughes, T. J. R. and Winget, J. (1980). “Finite rotation effects in numerical integration of rate constitutive equations arising in largedeformation analysis.” International Journal for Numerical Methods in Engineering, Vol. 15, No. 12, 1862–1867.

    Article  MathSciNet  MATH  Google Scholar 

  • Jirasek, M. and Zimmermann, T. (1998). “Analysis of rotating crack model.” Journal of Engineering Mechanics, Vol. 124, No. 8, pp. 842–851.

    Article  Google Scholar 

  • Joyce, J. A. and Hacket, E. M. (1994). “Development of an engineering definition of the extent of j-controlled crack growth.” Defect Assessment of Components-Fundamentals and Application, ESIS/EGF9, Blaut JG, Schwalbe KH. (Eds.), Mechanical Engineering Publications: London, pp. 233–249.

    Google Scholar 

  • Joyce, J. A. and Link, R. E. (1994). “Effects of constraint on upper shelf fracture toughness.” Fracture Mechanics, ASTM STP 1256. American Society for Testing Materials, Newman, Jr J. C., Reuter, W. G., Underwood, J. H. (Eds.), Vol. 26.

  • Le Phong B. E., Rabczuk, T., Nam, M. D., and Thanh, T. C. (2010a). “A moving IRBFN based integration-free meshless method.” CMESComputer Modeling in Engineering and Sciences, Vol. 61, No. 1, pp. 63–109.

    MathSciNet  MATH  Google Scholar 

  • Le Phong, B. E., Rabczuk, T., Nam, M. D., and Thanh, T. C. (2010b). “A moving local IRBFN based Galerkin meshless method.” CMESComputer Modeling in Engineering and Sciences, Vol. 66, No. 1, pp. 25–52.

    MATH  Google Scholar 

  • Liu, W. K., Jun, S., and Zhang, Y. F. (1995). “Reproducing kernel particle methods.” International Journal for Numerical Methods in Engineering, Vol. 20, No. 3, pp. 1081–1106.

    Article  MathSciNet  MATH  Google Scholar 

  • Melenk, J. M. and Babuska, I. (1996). “The partition of unity finite element method: basic theory and applications.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, Nos. 1–4, pp. 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Menouillard, T., Rethore, J., Combescure, A., and Bung, H. (2006). “Efficient explicit time stepping for the extended finite element method.” International Journal for Numerical Methods in Engineering, Vol. 68, No. 4, pp. 911–939.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, V. P., Rabczuk, T, Bordas, S., and Duflot, M. (2008). “Meshless methods: A review and computer implementation aspects.” Mathematics and Computers in Simulation, Vol. 79, No. 3, pp. 763–813.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas, S. (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177.

    Article  MATH  Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H., and Le-Van, C. (2013a). “An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems.” International Journal of Computational Methods, Vol. 10, No. 1, art. no. 13400033.

    Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H., and Le-Van, C. (2013b). “Free and forced vibration analysis using the nsided polygonal cell-based smoothed finite element method (nCSFEM).” International Journal of Computational Methods, Vol. 10, No. 1, art. no. 13400082.

    Google Scholar 

  • Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T., and Nguyen-Xuan, H. (2010). “A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analysis of solids using triangular and tetrahedral meshes.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 45–48, pp. 3005–2027.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Liu, G. R., Bordas, S., Natarajan, S., and Rabczuk, T. (2013). “An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order.” Computer Methods in Applied Mechanics and Engineering, Vol. 253, pp. 252–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008). “A smoothed finite element method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13–16, pp. 1184–1203.

    Article  MATH  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thoi, T., Tran, T., and Nguyen-Thanh, N. (2012). “Computation of limit and shakedown loads using a node-based smoothed finite element method.” International Journal for Numerical Methods in Engineering, Vol. 90, No. 3, pp. 287–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R. W. (1984). “Nonlinear elastic deformations.” Dover Publications.

    MATH  Google Scholar 

  • Oh, C.-K., Kim, Y.-J., Baek, J.-H., Kim, Y.-P., and Kim, W. S. (2007). “A phenomenological model of ductile fracture for api x65 steel.” International Journal of Mechanical Sciences, Vol. 49, No. 12, pp. 1399–1412.

    Article  Google Scholar 

  • Organ, D., Fleming, M., Terry, T., and Belytschko, T. (1996). “Continuous meshless approximations for nonconvex bodies by diffraction and transparency.” Computational Mechanics, Vol. 18, pp. 225–235.

    Article  MATH  Google Scholar 

  • Phan-Dao, H., Nguyen-Xuan, H., Thai-Hoang, C., Nguyen-Thoi, T., and Rabczuk, T. (2013). “An edge-based smoothed finite element method for analysis of laminated composite plates,” International Journal of Computational Methods, Vol. 10, No. 1, Art. No. 13400057.

    Google Scholar 

  • Rabczuk, T. and Areias, P. (2006a). “A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis.” Computer Modeling in Engineering & Sciences, Vol. 16, No. 2, pp. 115–130.

    Google Scholar 

  • Rabczuk, T., Akkermann, J., and Eibl, J. (2005). “A numerical model for reinforced concrete structures.” International Journal of Solids and Structures, Vol. 42, Nos. 5–6, pp. 1327–1354.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Areias, P. M. A. (2006b). “A new approach for modelling slip lines in geological materials with cohesive models.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, No. 11, pp. 1159–1172.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007a), “A meshfree thin shell method for non-linear dynamic fracture.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 5, pp. 524–548.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007c). “A simplified mesh-free method for shear bands with cohesive surfaces.” International Journal for Numerical Methods in Engineering, Vol. 69, No. 5, pp. 993–1021.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2006). “Application of particle methods to static fracture of reinforced concrete structures.” International Journal of Fracture, Vol. 137, Nos. 1–4, pp. 19–49.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2007). “A three dimensional large deformation meshfree method for arbitrary evolving cracks.” Computer Methods in Applied Mechanics and Engineering, Vol. 196, Nos. 29–30, pp. 2777–2799.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004a). “Stable particle methods based on lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12–14, pp. 1035–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2007b). “A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2010a), “On three-dimensional modeling of crack growth using partition of unity methods.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1391–1411.

    Article  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2003). “Simulation of high velocity concrete fragmentation using SPH/MLSPH.” International Journal for Numerical Methods in Engineering, Vol. 56, No. 10, pp. 1421–1444.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2004). “Numerical analysis of prestressed concrete beams using a coupled element free galerkin/finite element method.” International Journal of Solids and Structures, Vol. 41, Nos. 3–4, pp. 1061–1080.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Eibl, J., and Stempniewski, L. (2004b). “Numerical analysis of high speed concrete fragmentation using a meshfree lagrangian method.” Engineering Fracture Mechanics, Vol. 71, Nos. 4–6, pp. 547–556.

    Article  Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J. H., and Belytschko, T. (2010b). “Immersed particle method for fluid-structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 48–71.

    MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Samaniego, E. (2008). “Discontinuous modelling of shear bands using adaptive meshfree methods.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 6–8, pp. 641–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Song, J. H., and Belytschko, T. (2009). “Simulations of instability in dynamic fracture by the cracking particles method.” Engineering Fracture Mechanics, Vol. 76, No. 6, pp. 730–741.

    Article  Google Scholar 

  • Rabczuk, T. and Zi, G. (2007). “A meshfree method based on the local partition of unity for cohesive cracks.” Computational Mechanics, Vol. 39, No. 6, pp. 743–760.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2008a). “A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures.” Engineering Fracture Mechanics, Vol. 75, No. 16, pp. 4740–4758.

    Article  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010c). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 37–40, pp. 2437–2455.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Gerstenberger, A., and Wall, W. A. (2008b). “A new crack tip element for the phantom node method with arbitrary cohesive cracks.” International Journal for Numerical Methods in Engineering, Vol. 75, No. 5, pp. 577–599.

    Article  MATH  Google Scholar 

  • Sageresan, N. and Drathi, R. (2008). “Crack propagation in concrete using meshless method.” CMES-Computer Modeling in Engineering & Sciences, Vol. 32, No. 3, 103–112.

    MathSciNet  MATH  Google Scholar 

  • Song, J. H., Areais, P. M. A., and Belytschko, T. (2006), “A method for dynamic crack and shear band propagation with phantom nodes.” International Journal for Numerical Methods in Engineering, Vol. 67, No. 3, pp. 868–893.

    Article  MATH  Google Scholar 

  • Sun, Y., Hu, Y. G., and Liew, K. M. (2007). “A mesh-free simulation of cracking and failure using the cohesive segments method.” International Journal of Engineering Science, Vol. 45, Nos. 12–14, pp. 541–553.

    Article  MATH  Google Scholar 

  • Talebi, H., Samaniego, C., Samaniego, E., and Rabczuk, T. (2012). “On the numerical stabiliy and mass-lumping schemes for explicit enriched meshfree methods.” International Journal for Numerical Methods in Engineering, Vol. 89, No. 9, pp. 1009–1027.

    Article  MathSciNet  MATH  Google Scholar 

  • Thai-Hoang, C., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T. H., Nguyen-Thoi, T., and Rabczuk, T. (2012). “Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach.” International Journal for Numerical Methods in Engineering, Vol. 91, No. 6, pp. 571–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., and Rabczuk, T. (2011). “An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates.” Applied Mathematics and Computation, Vol. 217, No. 17, pp. 7324–7348.

    Article  MathSciNet  MATH  Google Scholar 

  • Tvergaard, V. (1981). “Influence of voids on shear band instabilities under plane strain condition.” International Journal of Fracture Mechanics, Vol. 17, No. 4, pp. 389–407.

    Article  Google Scholar 

  • Tvergaard, V. (1982). “On localization in ductile materials containing spherical voids.” International Journal of Fracture Mechanics, Vol. Vol. 18, No. 4, pp. 237–252.

    Google Scholar 

  • Tvergaard, V. (1990). “Material failure by void growth to coalescence.” Advances in Applied Mechanics, Vol. 27, pp. 83–151.

    Article  MATH  Google Scholar 

  • Tvergaard, V. and Needleman, A. (1984). “Analysis of the cup-cone fracture in a round tensile bar.” Acta Metallurgica, Vol. 32, No. 1, pp. 157–169.

    Article  Google Scholar 

  • Ventura, G., Xu, J., and Belytschko, T. (2002). “A vector level set method and new discontinuity approximation for crack growth by efg.” International Journal for Numerical Methods in Engineering, Vol. 54, No. 6, pp. 923–944.

    Article  MATH  Google Scholar 

  • Vu Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R. N., Liu, G. R., and Rabczuk, T. (2011). “A node-based smoothed extended finite element method (nsxfem) for fracture analysis.” CMES-Computer Modeling in Engineering & Sciences, Vol. 73, No. 4, pp. 331–355.

    MathSciNet  MATH  Google Scholar 

  • Vu Bac, N., Nguyen-Xuan, H., Lei, C., Lee, C. K., Zi, G., Zhuang, X., Liu, G. R., and Rabczuk, T. (2013). “A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics.” Journal of Applied Mathematics, Vol. 2013, Article ID 978026.

  • Wang, H. X. and Wang, S. X. (2008). “Analysis of dynamic fracture with cohesive crack segment method.” CMES-Computer Modeling in Engineering & Sciences, Vol. 35, Nos. 5–6, pp. 253–274.

    MathSciNet  MATH  Google Scholar 

  • Xia, L. and Shih, F. (1995). “Ductile crack growth i. a numerical study using computational cells with microstructurally based length scales.” Journal of the Mechanics and Physics of Solids, Vol. 43, No. 2, pp. 233–259.

    Article  MATH  Google Scholar 

  • Xum, S. S., Dong, Y., and Zhang, Y. (2008). “An efficient model for crack propagation.” CMES-Computer Modeling in Engineering & Sciences, Vol. 30, No. 1, pp. 17–26.

    Google Scholar 

  • Zi, G., Rabczuk, T., and Wall, W. (2007). “Extended meshfree methods without branch enrichment for cohesive cracks.” Computational Mechanics, Vol. 40, No. 2, pp. 367–382.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12205-016-1164-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Drathi, R. A meshless Cracking Particles Approach for ductile fracture. KSCE J Civ Eng 18, 238–248 (2014). https://doi.org/10.1007/s12205-014-0164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0164-4

Keywords

Navigation