Skip to main content
Log in

A meshfree continuous–discontinuous approach for the ductile fracture modeling in explicit dynamics analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a combined continuous–discontinuous modeling technique for the dynamic ductile fracture analysis using an interactive particle enrichment algorithm and a strain-morphed nonlocal meshfree method. The strain-morphed nonlocal meshfree method is a nodel-integrated meshfree method which was recently proposed for the analysis of elastic-damage induced strain localization problems. In this paper, the strain-morphed nonlocal meshfree formulation is extended to the elastic–plastic-damage materials for the ductile fracture analysis. When the ductile material is fully degraded, the interactive particle enrichment scheme is introduced in the strain-morphed nonlocal meshfree formulation that permits a continuous-to-discontinuous failure modeling. The essence of the interactive particle enrichment algorithm is a particle insertion–deletion scheme that produces a visibility criterion for the description of a traction-free crack and leads to a better presentation of the ductile fracture process. Several numerical benchmarks are examined using the explicit dynamics analysis to demonstrate the effectiveness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials, theory. Multiscale methods and applications. Wiley, New York

    Book  Google Scholar 

  2. Vernerey F, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55:2603–2651

    Article  MathSciNet  MATH  Google Scholar 

  3. Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography. J Mech Phys Solids 61:2108–2134

    Article  Google Scholar 

  4. O’Keeffe SC, Tang S, Kopacz AM, Smith J, Rowenhorst DJ, Spanos G, Liu WK, Olson GB (2015) Multiscale ductile fracture integrating tomographic characterization and 3-D simulation. Acta Mater 82:503–510

    Article  Google Scholar 

  5. Chaboche JL (1988) Continuum damage mechanics. Part I: general concepts. J Appl Mech 55:59–64

    Article  Google Scholar 

  6. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10:1–16

    Article  MathSciNet  MATH  Google Scholar 

  8. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 23:581–597

    Article  MATH  Google Scholar 

  9. Bažant ZP, Belytschko T, Chang TP (1984) Continuum theory for strain soften. J Eng Mech 110:1666–1692

    Article  Google Scholar 

  10. de Borst R, Muhlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithm aspects. Int J Numer Methods Eng 35:521–539

    Article  MATH  Google Scholar 

  11. Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623

    Article  Google Scholar 

  12. Wu L, Becker G, Noels L (2014) Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework. Comput Methods Appl Mech Eng 279:379–409

    Article  MathSciNet  Google Scholar 

  13. Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ (1998) Strain-based transient–gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160:133–153

    Article  MATH  Google Scholar 

  14. Simone A, Wells G, Sluys L (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192:4581–4607

    Article  MATH  Google Scholar 

  15. Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solid Struct 33:3327–3342

    Article  MATH  Google Scholar 

  16. Oliver J, Huespe AE, Pulido MDG, Chaves E (2002) From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng Fract Mech 69:113–136

    Article  Google Scholar 

  17. Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamics method for the construction of a cohesive law from a nonlocal damage model. Int J Solids Struct 46:1476–1490

    Article  MATH  Google Scholar 

  18. Oliver J (1996) Modeling strong discontinuities in solid mechanics via strain softening constitutive equations, Part I: fundamentals. Int J Numer Methods Eng 39:3575–3600

    Article  MATH  Google Scholar 

  19. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  20. Armero F, Linder C (2009) Numerical simulation of dynamics fracture using finite elements with embedded discontinuities. Int J Fract 160:119–141

    Article  MATH  Google Scholar 

  21. Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (2002) Localization issues in local and nonlocal continuum approaches to fracture. Eur J Mech A/Solids 21:175–189

    Article  MathSciNet  MATH  Google Scholar 

  22. Moës N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86:358–380

    Article  MathSciNet  MATH  Google Scholar 

  23. Tamayo-Mas E, Rodriguez-Ferran A (2014) A new continuous–discontinuous damage model: cohesive cracks via an accurate energy-transfer process. Theor Appl Fract Mech 69:90–101

    Article  Google Scholar 

  24. Seabra MRR, Cesar de Sa JMA, Andrade FXC, Pires FFMA (2011) Continuous–discontinuous formulation for ductile fracture. Int J Mater Form 4:271–281

    Article  Google Scholar 

  25. Broumand P, Khoei AR (2013) The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model. Eng Fract Mech 112–113:97–125

    Article  Google Scholar 

  26. Simonsen BC, Li S (2004) Mesh-free simulation of ductile fracture. Int J Numer Methods Eng 60:1425–1450

    Article  MATH  Google Scholar 

  27. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  28. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  29. Simkins DC, Li S (2006) Meshfree simulations of thermos-mechanical ductile fracture. Comput Mech 38:235–249

    Article  MATH  Google Scholar 

  30. Ren B, Li S, Qian J, Zeng X (2011) Meshfree simulations of spall fracture. Comput Methods Appl Mech Eng 200:797–811

    Article  MathSciNet  MATH  Google Scholar 

  31. Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Numer Methods Eng 49:2373–2393

    MathSciNet  Google Scholar 

  32. Li S, Liu WK (2000) Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int J Numer Methods Eng 48:1285–1309

    Article  MATH  Google Scholar 

  33. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  34. Chen JS, Wu CT, Belytschko T (2000) Regularization of material instabilities by meshfree approximations with intrinsic length scales. Int J Numer Methods Eng 47:1303–1322

    Article  MATH  Google Scholar 

  35. Chen JS, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193:2827–2844

    Article  MATH  Google Scholar 

  36. Chen JS, Wu CT, Yoon S, You T (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  37. Wang DD, Li Z (2013) A two-level strain smoothing regularized meshfree approach with stabilized conforming nodal integration for elastic damage analysis. Int J Damage Mech 22:440–459

    Article  Google Scholar 

  38. Wu YC, Wang DD, Wu CT (2014) Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method. Theor Appl Fract Mech 72:89–99

    Article  Google Scholar 

  39. Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput Mech 18:1–11

    Article  MathSciNet  MATH  Google Scholar 

  40. Duflot M, Nguyen-Dang H (2004) A meshless method with enriched weight functions for fatigue crack growth. Int J Numer Methods Eng 59:1945–1961

    Article  MATH  Google Scholar 

  41. Barbiere E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree method. Comput Mech 53:325–342

    Article  MathSciNet  MATH  Google Scholar 

  42. Keysl P, Belytschko T (1999) The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44:767–800

    Article  MATH  Google Scholar 

  43. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483–11504

    Article  MathSciNet  Google Scholar 

  44. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  MATH  Google Scholar 

  45. Bordas S, Rabczuk T, Zi G (2008) Three-dimension crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75:943–960

    Article  Google Scholar 

  46. Li S, Liu WK (2004) Meshfree particle method. Springer, Berlin

    MATH  Google Scholar 

  47. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  48. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74

    Article  MathSciNet  MATH  Google Scholar 

  49. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189

    Article  MathSciNet  MATH  Google Scholar 

  50. Breezi F, Bristeau MO, Franca LP, Mallet M, Rogé G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Eng 96:117–129

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang DD, Chen JS (2004) Locking free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation. Comput Methods Appl Mech Eng 193:1065–1083

    Article  MATH  Google Scholar 

  52. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin Meshfree methods. Int J Numer Methods Eng 95:361–450

    Article  MathSciNet  Google Scholar 

  53. Wu CT, Koishi M, Hu W (2015) A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Comput Mech 56:19–37

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu CT, Wang DD, Guo Y (2016) An immersed particle modeling technique for the three-dimensional large strain simulation of particulate-reinforced metal-matrix composites. Appl Math Model 40:2500–2513

    Article  MathSciNet  Google Scholar 

  55. Wu YC, Wang DD, Wu CT (2015) A direct displacement smoothing meshfree particle formulation for impact failure modeling. Int J Impact Eng 87:169–185

    Article  Google Scholar 

  56. Wu CT, Ren B (2015) A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput Methods Appl Mech Eng 291:197–215

    Article  MathSciNet  Google Scholar 

  57. Wu CT, Chi SW, Koishi M, Wu YC (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng. doi:10.1002/nme.5147 (in press)

  58. Wu CT, Wu YC, Koishi M (2015) A strain-morphed nonlocal meshfree method for the regularized particle simulation of elastic-damage induced strain localization problems. Comput Mech 56:1039–1054

    Article  MathSciNet  MATH  Google Scholar 

  59. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893

    Article  MATH  Google Scholar 

  60. Menouillard T, Belytschko T (2010) Dynamic fracture with meshfree enriched XFEM. Acta Mech 213:53–69

    Article  MATH  Google Scholar 

  61. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  MATH  Google Scholar 

  62. Wu CT, Park CK, Chen JS (2011) A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85:693–722

    Article  MATH  Google Scholar 

  63. Wu CT, Koishi M (2012) Three-dimensional meshfree-enriched finite element formulation for the micromechanical hyperelastic modeling of particulate rubber composites. Int J Numer Methods Eng 91:1137–1156

    Article  MathSciNet  Google Scholar 

  64. Grassl P, Jirásek M (2006) Plastic model with non-local damage applied to concrete. Int J Numer Anal Met 30:71–90

    Article  MATH  Google Scholar 

  65. Unger JF, Eckardt S (2011) Multiscale modeling of concrete. Arch Comput Methods Eng 18:341–393

    Article  MATH  Google Scholar 

  66. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063

    Article  MathSciNet  MATH  Google Scholar 

  67. Belytschko T, Bindeman LP (1993) Assumed strain stabilization of the eight node hexahedral element. Comput Methods Appl Mech Eng 105:225–260

    Article  MATH  Google Scholar 

  68. Park CK, Wu CT, Kan CD (2011) On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation. Finite Elem Anal Des 47:683–697

    Article  MathSciNet  Google Scholar 

  69. Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25:803–833

    Article  MATH  Google Scholar 

  70. Grassl P, Jirásek M (2006) Damage-plastic model for concrete failure. Int J Solids Struct 43:7166–7196

    Article  MATH  Google Scholar 

  71. Jason J, Huerta A, Pijaudier-Cabot G, Ghavamian S (2006) An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model. Comput Methods Appl Mech Eng 195:7077–7092

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. John O. Hallquist of LSTC for his support to this research. The financial support from Honda R&D Co., Ltd to LSTC and JSOL is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Wu.

Appendix

Appendix

The combinations of isotropic damage and plasticity are widely used for ductile as well as semi-brittle fracture analyses. In this study, we follow a common approach [6971] that combines the plasticity formulated on the effective stress \(\bar{{{\varvec{\sigma }}}}\) [5, 6, 9, 33] with the strain-based damage.

For isotropic damage, the effective stress tensor \(\bar{{{\varvec{\sigma }} }}\) is related to Cauchy stress tensor \({\varvec{\sigma }}\) by [5, 6, 9, 33]

$$\begin{aligned} \bar{{{\varvec{\sigma }} }}=\frac{{\varvec{\sigma }}}{\left( {1-d} \right) }={{\varvec{C}}^{e}:{\varvec{\varepsilon }} ^{e}}={{\varvec{C}}^{e}:\left( {{\varvec{\varepsilon }} - {\varvec{\varepsilon }} ^{p}} \right) } \end{aligned}$$
(52)

where \({\varvec{C}}^{e}\) is the fourth order elastic stiffness tensor, \({\varvec{\varepsilon }} ^{e}\) is the elastic strain, \({\varvec{\varepsilon }} \) is the total strain, \({\varvec{\varepsilon }} ^{p}\) is the plastic strain and d is the scale damage valuable. Note in engineering practice, the evolution equations for international valuable d and \({\varvec{\varepsilon }} ^{p}\) are phenomenological and material dependent. The algorithm for the stress update in Eq. (52) is divided into two stages [64, 65, 71]. First, the update of effective stress for the plastic part is carried out by an implicit algorithm; then, the damage part is evaluated from the plastic strain increment obtained in the first stage.

In the first stage, the yield function is also defined in the effective stress space as [64, 65]

$$\begin{aligned} \bar{{\phi }}^{p}\left( {\bar{{{\varvec{\tau }}}},e^{p}} \right) =\left\| {\bar{{{\varvec{\tau }}}}} \right\| -\sqrt{\frac{2}{3}}{\varvec{\sigma }} _y \left( {e^{p}} \right) \end{aligned}$$
(53)

where \(\bar{{\tau }}\) is the effective or undamaged deviatoric stress tensor, and \(\sigma _y\) is the flow stress. The local effective plastic strain \(e^{p}\) is defined as usual by

$$\begin{aligned} e^{p}=\displaystyle \int _0^t {\sqrt{\frac{2}{3}}} \left\| {\dot{{\varvec{\varepsilon }} }^{p}\left( s \right) } \right\| ds \end{aligned}$$
(54)

with the classical flow rule of associative plasticity given by

$$\begin{aligned} \dot{{\varvec{\varepsilon }} }^{p}=\dot{\gamma }\frac{\partial \bar{{\phi }}^{p}}{\partial \bar{{{\varvec{\sigma }} }}}=\dot{\gamma }\frac{\bar{{\varvec{\tau }}}}{\left\| {\bar{{\varvec{\tau }}}} \right\| } \end{aligned}$$
(55)

where \(\dot{{\varvec{\varepsilon }} }^{p}\) is the rate of plastic strain tensor and \(\dot{\gamma }\) is the plastic multiplier which is consistent with the loading/unloading conditions by \(\dot{\gamma }\ge 0,\bar{{\phi }}^{p}\le 0\) and \(\dot{\gamma }\bar{{\phi }}^{p}=0\).

In the damage stage, the loading function is given by [64, 65]

$$\begin{aligned} \bar{{\phi }}^{d}\left( {e^{p}} \right) =\bar{{e}}^{p}-\kappa \end{aligned}$$
(56)

with the loading/unloading conditions by \(\dot{\kappa }\ge 0,\bar{{\phi }}^{d}\le 0\) and \(\dot{\kappa }\bar{{\phi }}^{d}=0\). In this study, a simple damage law is given in Eq. (50), and the nonlocal effective plastic strain \(\bar{{e}}^{p}\) [64, 65] is obtained using the meshfree strain smoothing procedure [34, 58] by

$$\begin{aligned} \bar{{e}}^{p}=\int _\Omega {\tilde{\varPsi }^{c}\left( {{\varvec{X;X-\xi }} } \right) e^{p}d\varOmega } \end{aligned}$$
(57)

where \(\tilde{\varPsi }^{c}\) is the strain smoothing function for regularization defined in Sect. 2. Note the strain smoothing function \(\tilde{\varPsi }^{c}\) is defined in the reference configuration and is subjected to visibility criterion described in Sect. 3 using the interactive particle enrichment algorithm. Accordingly, the rate of the nonlocal effective plastic strain \(\dot{\bar{{e}}}^{p}\) is computed by

$$\begin{aligned} \dot{\bar{{e}}}^{p}=\int _\Omega {\tilde{\varPsi }^{c}\left( {{\varvec{X;X-\xi }} } \right) \dot{e}^{p}d\varOmega } \end{aligned}$$
(58)

with

$$\begin{aligned} \dot{e}^{p}=\sqrt{\frac{2}{3}}\dot{\gamma } \end{aligned}$$
(59)

Finally, the Cauchy stress tensor \({\varvec{\sigma }}\) for the evaluation of internal force in Eq. (31) is computed by [64, 65]

$$\begin{aligned} {\varvec{\sigma }} =\left( {1-d\left( {\bar{{e}}^{p}} \right) } \right) \bar{{\varvec{\sigma }}} \end{aligned}$$
(60)

In this study, Eqs. (52)–(60) are utilized in the regular return mapping algorithm for explicit dynamics analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.T., Ma, N., Takada, K. et al. A meshfree continuous–discontinuous approach for the ductile fracture modeling in explicit dynamics analysis. Comput Mech 58, 391–409 (2016). https://doi.org/10.1007/s00466-016-1299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1299-6

Keywords

Navigation