Skip to main content
Log in

Estimation of coefficients of consolidation and permeability via piezocone dissipation tests

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Measured excess pore pressure dissipation responses always present a different trend from those theoretically expected. A simple hyperbolic equation for estimating the coefficient of consolidation [c h(Hyp)] was thus proposed based on the indirect fit between both responses. The method was applied to dissipation test data in the normally consolidated clay of Nakdong River Delta. The result indicates that c h(Hyp) values vary with the normalized excess pore pressure (U), showing different trends according to the patterns of both curves. The mean values estimated with four theoretical solutions vary within a difference of 200%, and are close to those of the consolidation tests. The coefficients of consolidation obtained using three conventional methods, which are based on the direct fits at U = 50% and between the early or late parts of both curves, lie within or out of the range of c h(Hyp). The coefficients of permeability estimated using the mean values of c h(Hyp) underestimate those of the laboratory permeability test and those of an empirical formula based on the piezocone sounding records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Farsakh, M. Y. and Nazzal, M. D. (2005). “Reliability of piezocone penetration test methods for estimating the coefficient of consolidation of cohesive soils.” Transportation Research Record, No. 1913, pp. 62–76.

    Article  Google Scholar 

  • Baligh, M. M. and Levadoux, J. N. (1986). “Consolidation after undrained piezozone penetration, II: Interpretation.” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 7, pp. 727–745.

    Article  Google Scholar 

  • Burns, S. E. and Mayne, P. W. (1998). “Monotonic and dilatory pore pressure decay during piezocone tests inclay.” Canadian Geotechnical Journal, Vol. 35, No. 6, pp. 1063–1073.

    Article  Google Scholar 

  • Cai, G. J., Liu, S. Y., Puppala, A. J., Tong, L. Y., and Du, G. Y. (2010). “Estimation of consolidation coefficient from piezocone dissipation tests in Jiangsu Quaternary clay deposits, China.” Proc. GeoFlorida- 2010 Conference, ASCE, pp. 1018–1028.

    Chapter  Google Scholar 

  • Chai, J. C., Agung, P. M. A., Hino, T., Igaya, Y., and Carter, J. P. (2011). “Estimating hydraulic conductivity from piezocone soundings.” Géotechnique, Vol. 61, No. 8, pp. 699–708.

    Google Scholar 

  • Chai, J. C., Sheng, D., Carter, J. P., and Zhu, H. (2012). “Coefficient of consolidation from non-standard piezocone dissipation tests.” Computers and Geotechnics, Vol. 41, pp. 13–22.

    Article  Google Scholar 

  • Chen, B. S. Y. and Mayne, P. W. (1994). Profiling the OCR of clays by piezocone tests, Report No. CEEGEO-94-1, Georgia Institute of Technology, Atlanta, U.S.A.

    Google Scholar 

  • Chu, J., Bo, M. W., Chang, M. F., and Choa, V. (2002). “Consolidation and permeability properties of Singapore marine clay.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 9, pp. 724–732.

    Article  Google Scholar 

  • Chung, S. G., Choi, G. H., Choi, H. K., and Cho, K. Y. (1998). “Root time method for consolidation analysis.” Journal of Korean Geotechnical Society, Vol. 14, No. 2, pp. 41–53. (in Korean)

    Google Scholar 

  • Chung, S. G. and Kweon, H. J. (2013). “Oil-operated fixed piston sampler and its applicability.” J. of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 1, pp. 134–142.

    Article  Google Scholar 

  • Chung, S. G., Kweon, H. J., and Jang, W. Y. (2014). “A hyperbolic fit method for interpretation of piezocone dissipation tests.” J. of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 140, No. 1, pp. 251–254.

    Article  Google Scholar 

  • Chung, S. G., Lee, N. K., and Kim, S. R. (2009). “Hyperbolic method for prediction of prefabricated vertical drains performance.” J. of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 135, No. 10, pp. 1519–1528.

    Article  Google Scholar 

  • Chung, S. G., Lee, N. K., Lee, J. M., Min, S. C., and Hong, Y. P. (2010). “Hydraulic characteristics of Busan clay in the floodplain of the Nakdong river delta.” Journal of Korean Geotechnical Society, Vol. 26, No. 11, pp. 47–61 (in Korean).

    Google Scholar 

  • Chung, S. G., Ryu, C. K., Min, S. C., Lee, J. M., Hong, Y. P., and Odgerel, Enkhtur (2012). “Geotechnical characterisation of Busan clay.” KSCE Journal of Civil Engineering, KSCE, Vol. 16, No. 4, pp. 341–350.

    Article  Google Scholar 

  • Danziger, F. A. B., Almeida, M. S. S., and Sills, G. C. (1997). “The significance of the strain path analysis in the interpretation of piezocone dissipation data.” Géotechnique, Vol. 47, No. 5, pp. 901–914.

    Article  Google Scholar 

  • Elswroth, D. and Lee, D. S. (2005). “Permeability determination from on-the-fly piezocone sounding.” J. Geotech. Geoenviron. Engng., Vol. 131, No. 5, pp. 643–653.

    Article  Google Scholar 

  • Elsworth, D. and Lee, D. S. (2007). “Limits in determining permeability from on-the-fly uCPT sounding.” Géotechnique, Vol. 57, No. 8, pp. 769–685.

    Article  Google Scholar 

  • Gillespie, D. and Campanella, R. G. (1981). “Consolidation characteristics from pore pressure dissipation after piezometer cone penetration.” Soil Mechanics Series No. 47, Dept. of Civil Engineering, The University of British Coulombia, Vancouver, Canada.

    Google Scholar 

  • Lunne, T., Robertson, P. K., and Powell, J. J. M. (1997). Cone penetration testing in geotechnical practice, Blackie Academic and Professional.

    Google Scholar 

  • Mayne, P. W. (2001). “Stress-strain-strength-flow parameters from enhanced in-situ tests.” Proceedings of International Conference on In-situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, pp. 27–48.

    Google Scholar 

  • Randolph, M. F. and Wroth, C. P. (1979). “An analytical solution for the consolidation around a driven pile.” International J. of Numerical and Analytic Methods in Geomechanics, Vol. 3, No. 3, pp. 217–229.

    Article  MATH  Google Scholar 

  • Robinson, R.G. and Allam, M. M. (1996). “Determination of coefficient of consolidation from early stage of log t plot.” Geotechnical Testing Journal, ASTM, Vol. 19, No. 3, pp. 316–320.

    Article  Google Scholar 

  • Robertson, P. K., Sully, J. P., Woeller, D. J., Lunne, T., Powell, J. J. M., and Gillespie, D. G. (1992). “Estimating coefficient of consolidation from piezocone tests.” Canadian Geotechnical Journal, Vol. 29, No. 4, pp. 539–550.

    Article  Google Scholar 

  • Rust, E. and Clayton, C. R. I. (1999). “Interpretation of incomplete dissipation data from piezocone tests.” Proc. Inst. Civil Engnrs, Geotechnical Engineering, Vol. 137, No. 2, pp. 97–103.

    Google Scholar 

  • Schnaid, F., Sills, G. C., Soares, J. M., and Nyirenda, Z. (1997). “Predictions of the coefficient of consolidation from piezocone tests.” Canadian Geotechnical Journal, Vol. 34, No. 2, pp. 315–327.

    Article  Google Scholar 

  • Soderberg, L. O. (1962). “Consolidation theory applied to foundation pile time effects.” Géotechnique, Vol. 12, No. 3, pp. 217–225.

    Article  Google Scholar 

  • Sridharan, A. and Prakash, K. (1985). “Improved rectangular hyperbola method for the determination of coefficient of consolidation.” Geotechnical Testing Journal, ASTM, Vol. 8, No. 1, pp. 37–40.

    Article  Google Scholar 

  • Sully, J. P., Robertson, P. K., Campanella, R. G., and Woeller, D. J. (1999). “An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils.” Canadian Geotechnical Journal, Vol. 36, No. 2, pp. 369–381.

    Article  Google Scholar 

  • Tan, T. S., Inoue, T., and Lee, S. L. (1991). “Hyperbolic method for consolidation analysis.” J. Geotech. Engrg., ASCE, Vol. 117, No. 11, pp. 1723–1737.

    Article  Google Scholar 

  • Tavenas, F., Tremblay, M., Larouche, G., and Leroueil, S. (1986). “In situ measurement of permeability in soft clays.” ASCE Specialty Conf. In Situ 86, Blacksburg, VA, pp. 1034–1048.

    Google Scholar 

  • Teh, C. I. (1987). An analytical study of the cone penetration test, PhD Thesis, Dept. of Civil Engineering, Oxford University.

    Google Scholar 

  • Teh, C. I. and Houlsby, G. T. (1991). “An analytical study of the cone penetration test in clay.” Géotechnique, Vol. 41, No. 1, pp. 17–34.

    Article  Google Scholar 

  • Torstensson, B. A. (1975). “Pore pressure sounding instrument.” Proceedings of the ASCE Specialty Conference on In-situ Measurement of Soil Properties ISMOSP, Raleigh, Vol. 2, pp. 48–54.

    Google Scholar 

  • Torstensson, B.-A. (1977). “The pore pressure probe.” Nordiske Geotekniske Mote, Oslo, Paper No. 34, pp. 34.1–34.15.

    Google Scholar 

  • Yune, C. Y. and Chung, C. K. (2005). “Consolidation test at constant rate of strain for radial drainage.” Geotechnical Testing Journal, Vol. 28, No. 1, pp. 71–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, W.Y., Chung, S.G. & Kweon, H.J. Estimation of coefficients of consolidation and permeability via piezocone dissipation tests. KSCE J Civ Eng 19, 621–630 (2015). https://doi.org/10.1007/s12205-013-1418-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-1418-2

Keywords

Navigation