Skip to main content
Log in

Fault Diagnosis for Rolling Element Bearing in Dataset Bias Scenario

数据集偏差情况下滚动轴承的故障诊断

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Recently, data-driven methods, especially deep learning, outperform other methods for rolling element bearing (REB) fault diagnosis. Nevertheless, most research work assumes that REB dataset is unbiased. In the real industry applications, the dataset bias exists with REB owing to varying REB working conditions and noise interference. Recently proposed adversarial discriminative domain adaptation (ADDA) is an increasingly popular incarnation to solve dataset bias problem. However, it mainly devotes to realizing domain alignments, and ignores class-level alignments; it can cause degradation of classification performance. In this study, we propose a new REB fault diagnosis model based on improved ADDA to address dataset bias. The proposed diagnosis model realizes domain- and class-level alignments in dataset bias scenario; it consists of two feature extractors, a domain discriminator, and two label classifiers. The feature extractors and domain discriminator are trained in an adversarial manner to minimize the domain difference in feature extractors. The domain discrepancy in label classifier is reduced by minimizing correlation alignment (CORAL) loss. We evaluate the proposed model on the Case Western Reserve University (CWRU) bearing dataset and Paderborn University bearing dataset. The proposed method yields better results than other methods and has good prospects for industrial applications.

摘要

近年来, 基于数据驱动的方法, 特别是深度学习方法在滚动轴承故障诊断方面的表现优于其他方法. 然而, 大多数研究工作都假设滚动轴承故障数据集是无偏差的. 在实际工业应用中, 由于工作条件的变化和外部噪声的干扰, 导致滚动轴承故障数据集存在偏差. 对抗判别域自适应方法是一种解决数据集偏差问题的流行方法. 然而, 该方法主要实现领域对齐, 而忽略了类级对齐, 会导致分类性能的下降. 本研究提出了一种基于改进的对抗判别域自适应的滚动轴承故障诊断模型, 该模型实现了数据集偏差的域级和类级对齐. 由两个特征提取器、一个域判别器和两个标签分类器组成. 以对抗的方式训练特征提取器和域判别器, 最小化特征提取器的域差异, 通过最小化相关对齐损失来减少标签分类器中的域差异. 在凯斯西储大学滚动轴承数据集和帕德博恩大学滚动轴承数据集上对所提模型进行了模型性能评估. 实验结果表明所提模型性能优于其他方法, 具有良好的工业应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NANDI S, TOLIYAT H A, LI X. Condition monitoring and fault diagnosis of electrical motors: A review [J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 719–729.

    Article  Google Scholar 

  2. GUO X J, CHEN L, SHEN C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis [J]. Measurement, 2016, 93: 490–502.

    Article  Google Scholar 

  3. FAHMI A, ABDULLAH S, AMIN F, et al. Trapezoidal cubic fuzzy number Einstein hybrid weighted averaging operators and its application to decision making [J]. Soft Computing, 2019, 23(14): 5753–5783.

    Article  MATH  Google Scholar 

  4. FAHMI A, AMIN F, ABDULLAH S, et al. Cubic fuzzy Einstein aggregation operators and its application to decision-making [J]. International Journal of Systems Science, 2018, 49(11): 2385–2397.

    Article  MathSciNet  MATH  Google Scholar 

  5. KOBAYASHI Y, SONG L, TOMITA M, et al. Automatic fault detection and isolation method for roller bearing using hybrid-GA and sequential fuzzy inference [J]. Sensors, 2019, 19(16): 3553.

    Article  Google Scholar 

  6. WANG Z Y, YAO L G, CAI Y W. Rolling bearing fault diagnosis using generalized refined composite multi-scale sample entropy and optimized support vector machine [J]. Measurement, 2020, 156: 107574.

    Article  Google Scholar 

  7. LI X Q, JIANG H K, NIU M G, et al. An enhanced selective ensemble deep learning method for rolling bearing fault diagnosis with beetle antennae search algorithm [J]. Mechanical Systems and Signal Processing, 2020, 142: 106752.

    Article  Google Scholar 

  8. ZHAO W G, SHI T C, WANG L Y. Fault diagnosis and prognosis of bearing based on hidden Markov model with multi-features [J]. Applied Mathematics and Nonlinear Sciences, 2020, 5(1): 71–84.

    Article  MathSciNet  MATH  Google Scholar 

  9. LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap [J]. Mechanical Systems and Signal Processing, 2020, 138: 106587.

    Article  Google Scholar 

  10. WAN S T, PENG B. An integrated approach based on swarm decomposition, morphology envelope dispersion entropy, and random forest for multi-fault recognition of rolling bearing [J]. Entropy, 2019, 21(4): 354.

    Article  MathSciNet  Google Scholar 

  11. LI K, SU L, WU J J, et al. A rolling bearing fault diagnosis method based on variational mode decomposition and an improved kernel extreme learning machine [J]. Applied Sciences, 2017, 7(10): 1004.

    Article  Google Scholar 

  12. SU Z Q, TANG B P, MA J H, et al. Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier [J]. Measurement, 2014, 48: 136–148.

    Article  Google Scholar 

  13. LI J M, YAO X F, WANG X D, et al. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis [J]. Measurement, 2020, 153: 107419.

    Article  Google Scholar 

  14. HOANG D T, KANG H J. A survey on Deep Learning based bearing fault diagnosis [J]. Neurocomputing, 2019, 335: 327–335.

    Article  Google Scholar 

  15. YAO Y, ZHANG S, YANG S X, et al. Learning attention representation with a multi-scale CNN for gear fault diagnosis under different working conditions [J]. Sensors, 2020, 20(4): 1233.

    Article  Google Scholar 

  16. CHEN T, WANG Z, YANG X, et al. A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals [J]. Measurement, 2019, 148: 106857.

    Article  Google Scholar 

  17. HUANG W Y, CHENG J S, YANG Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis [J]. Neurocomputing, 2019, 359: 77–92.

    Article  Google Scholar 

  18. HAO S J, GE F X, LI Y M, et al. Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks [J]. Measurement, 2020, 159: 107802.

    Article  Google Scholar 

  19. TAO J, LIU Y L, YANG D L. Bearing fault diagnosis based on deep belief network and multisensor information fusion [J]. Shock and Vibration, 2016, 2016: 9306205.

    Article  Google Scholar 

  20. SHAO H D, JIANG H K, ZHANG X, et al. Rolling bearing fault diagnosis using an optimization deep belief network [J]. Measurement Science and Technology, 2015, 26: 115002.

    Article  Google Scholar 

  21. TANG H H, LIAO Z Q, OZAKI Y, et al. Stepwise intelligent diagnosis method for rotor system with sliding bearing based on statistical filter and stacked autoencoder [J]. Applied Sciences, 2020, 10(7): 2477.

    Article  Google Scholar 

  22. DENG X G, ZHANG Z. Nonlinear chemical process fault diagnosis using ensemble deep support vector data description [J]. Sensors, 2020, 20(16): 4599.

    Article  Google Scholar 

  23. LI H M, HUANG J Y, JI S W. Bearing fault diagnosis with a feature fusion method based on an ensemble convolutional neural network and deep neural network [J]. Sensors, 2019, 19(9): 2034.

    Article  Google Scholar 

  24. ZHU H, CHENG J, ZHANG C, et al. Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings [J]. Applied Soft Computing, 2020, 88: 106060.

    Article  Google Scholar 

  25. LIU H, ZHOU J Z, ZHENG Y, et al. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders [J]. ISA Transactions, 2018, 77: 167–178.

    Article  Google Scholar 

  26. TOMMASI T, PATRICIA N, CAPUTO B, et al. A deeper look at dataset bias [M]//Domain adaptation in computer vision applications. Cham: Springer, 2017: 37–55.

    Chapter  Google Scholar 

  27. TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance [EB/OL]. (2014-12-10). https://arxiv.org/abs/1412.3474.

  28. GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test [J]. The Journal of Machine Learning Research, 2012, 13: 723–773.

    MathSciNet  MATH  Google Scholar 

  29. SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation [EB/OL]. (2015-11-17). https://arxiv.org/abs/1551.05547.

  30. ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (CMD) for domain-invariant representation learning [EB/OL]. (2017-02-28). https://arxiv.org/abs/1702.08811.

  31. TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2962–2971.

    Google Scholar 

  32. HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex [J]. The Journal of Physiology, 1962, 160(1): 106–154.

    Article  Google Scholar 

  33. OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381: 607–609.

    Article  Google Scholar 

  34. BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798–1828.

    Article  Google Scholar 

  35. HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image [J]. Cognitive Systems Research, 2019, 53: 42–50.

    Article  Google Scholar 

  36. RAWAT W, WANG Z H. Deep convolutional neural networks for image classification: A comprehensive review [J]. Neural Computation, 2017, 29(9): 2352–2449.

    Article  MathSciNet  MATH  Google Scholar 

  37. GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems: Volume 2. Cambridge, USA: MIT Press, 2014: 2672–2680.

    Google Scholar 

  38. SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100–131.

    Article  Google Scholar 

  39. WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method [J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990–5998.

    Article  Google Scholar 

  40. LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification [C]//3rd Euopean Conference of the Prognostics and Health Management Society. Bilbao, Spain: PHM Society, 2016: 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundong Zhang  (张均东).

Additional information

Foundation item: the Research on Intelligent Ship Testing and Verification (No. [2018]473)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, J. Fault Diagnosis for Rolling Element Bearing in Dataset Bias Scenario. J. Shanghai Jiaotong Univ. (Sci.) 28, 638–651 (2023). https://doi.org/10.1007/s12204-021-2320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2320-6

Key words

关键词

CLC number

Document code

Navigation