Skip to main content
Log in

Numerical simulation of viscous flow over a grooved surface by the lattice Boltzmann method

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The motivation of this work is to investigate a grooved surface’s drag reduction. The viscous flow through a two-dimensional microchannel with the grooved surface is analyzed by the lattice Boltzmann method (LBM). The effects of the grooved surface on the streamline patterns, the velocity distributions near wall region and the fluid shear stress distributions on the walls at different Reynolds numbers are studied. In addition, the influences of the groove’s geometrical parameters on the grooved surface’s drag reduction are discussed. The numerical results confirm the grooved surface’s drag reduction and present the drag reduction law of the grooved surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BECHERT D W, BRUSE M, HAGE W, et al. Fluid mechanics of biological surfaces and their technological application [J]. Naturwissenschaften, 2000, 87(4): 157–171.

    Article  Google Scholar 

  2. FROHNAPFEL B, JOVANVIC J, DELGADO A. Experimental investigations of turbulent drag reduction by surface-embedded grooves [J]. Journal of Fluid Mechanics, 2007, 590: 107–116.

    Article  MATH  Google Scholar 

  3. YAO Y, LU C J, SI T, et al. Water tunnel experimental investigation on the drag reduction characteristics of the traveling wavy wall [J]. Journal of Hydrodynamics, Ser B, 2011, 23(1): 65–70.

    Article  Google Scholar 

  4. BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin [J]. Experiments in Fluids, 2000, 28(5): 403–412.

    Article  Google Scholar 

  5. ITOH M, TAMANO S, IGUCHI R, et al. Turbulent drag reduction by the seal fur surface [J]. Physics of Fluids, 2006, 18(6): 065102.

    Article  Google Scholar 

  6. TIAN L, REN L, LIU Q, et al. The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces [J]. Journal of Bionic Engineering, 2007, 4(2): 109–116.

    Article  Google Scholar 

  7. EL-SAMNI O A, CHUN H H, YOON H S. Drag reduction of turbulent flow over thin rectangular riblets [J]. International Journal of Engineering Science, 2007, 45(2): 436–454.

    Article  Google Scholar 

  8. BRENNER G, AL-ZOUBI A, MUKINOVIC M, et al. Numerical simulation of surface roughness effects in laminar lubrication using the lattice-Boltzmann method [J]. Journal of Tribology, 2007, 129(3): 603–610.

    Article  Google Scholar 

  9. AL-ZOUBI A, BRENNER G. Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method [J]. Computers & Mathematics with Applications, 2008, 55(7): 1365–1376.

    Article  MathSciNet  MATH  Google Scholar 

  10. VARNIK F, DORNER D E E, RAABE D. Roughness-induced flow instability: A lattice Boltzmann study [J]. Journal of Fluid Mechanics, 2007, 573: 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  11. SHAN X, DOOLEN G. Multicomponent lattice-Boltzmann model with interparticle interaction [J]. Journal of Statistical Physics, 1995, 81(1-2): 379–393.

    Article  MathSciNet  MATH  Google Scholar 

  12. LADD A J C, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions [J]. Journal of Statistical Physics, 2001, 104(5-6): 1191–1251.

    Article  MathSciNet  MATH  Google Scholar 

  13. LIM C Y, SHU C, NIU X D, et al. Application of lattice Boltzmann method to simulate microchannel flows [J]. Physics of Fluids, 2002, 14(7): 2299–2308.

    Article  MATH  Google Scholar 

  14. HUANG H, WANG L, LU X. Evaluation of three lattice Boltzmann models for multiphase flows in porous media [J]. Computers & Mathematics with Applications, 2011, 61(12): 3606–3617.

    Article  MathSciNet  MATH  Google Scholar 

  15. CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329–364.

    Article  MathSciNet  Google Scholar 

  16. YU D, MEI R, LUO L S, et al. Viscous flow computations with the method of lattice Boltzmann equation [J]. Progress in Aerospace Sciences, 2003, 39(5): 329–367.

    Article  Google Scholar 

  17. RAHMATI A R, ASHRAFIZAADEH M. A generalized lattice Boltzmann method for three-dimensional incompressible fluid flow simulation [J]. Journal of Applied Fluid Mechanics, 2009, 2(1): 71–95.

    Google Scholar 

  18. GUO Z, ZHENG C, SHI B. An extrapolation method for boundary conditions in lattice Boltzmann method [J]. Physics of Fluids, 2002, 14(6): 2007–2010.

    Article  MATH  Google Scholar 

  19. MEI R, YU D, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry [J]. Physical Review E, 2002, 65(4): 041203.

    Article  Google Scholar 

  20. HUANG Q G, PAN G, WU H, et al. Investigation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface [J]. Journal of Experiments Fluid Mechanics, 2011, 25(5): 21–25 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Pan  (潘 光).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 11502210 and 51279165)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Pan, G. Numerical simulation of viscous flow over a grooved surface by the lattice Boltzmann method. J. Shanghai Jiaotong Univ. (Sci.) 21, 143–150 (2016). https://doi.org/10.1007/s12204-016-1705-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-016-1705-4

Keywords

CLC number

Document code

Navigation