Skip to main content
Log in

Molecular dynamics simulation on flows in nano-ribbed and nano-grooved channels

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

We present molecular dynamics simulation results on fluid and transport properties for nanochannel flows. The upper channel wall is constructed from periodic roughness elements and flows are simulated both in longitudinal (ribs) and transverse (grooves) direction and are compared to respective flat-wall channel flows. Various wall/fluid interaction strength ratios are considered for the simulations, covering typical hydrophilic and hydrophobic channels. We show that groove orientation (ribs and grooves) has a primitive effect on flow mainly due to slip length increase in a ribbed-wall channel. The transport properties of the fluid are significantly affected by wall wettability, as, in flows past an hydrophobic wall, the diffusion coefficient presents anisotropy, shear viscosity attains a minimum value and thermal conductivity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c v :

Specific heat

D i :

Diffusion coefficient, i = ch for channel average and i = lay for local/layer average

\(D_{i}^{||}\) :

Parallel to the flow diffusion coefficient, i = ch for channel average and i = lay for local/layer average

\(D_{i}^{T}\) :

Transverse to the flow diffusion coefficient, i = ch for channel average and i = lay for local/layer average

d :

System dimensionality

\(F_{ext}^{x,y}\) :

Magnitude of external driving force in the x- or y-direction

g h :

Groove height

g l :

Groove length

\(h\) :

Channel height

\({\mathbf{I}}\) :

Unitary matrix

\(J_{q}^{x}\) :

Microscopic heat flow

k B :

Boltzman constant

L s,eff :

Effective slip length

m :

Atomic mass

N :

Number of atoms

N lay :

Number of atoms in a layer

r i :

Position vector of atom i

\({\mathbf{r}}_{ij}\) :

Distance vector between ith and jth atom

T :

Temperature

V:

Volume

z * :

Normalized distances in the z-direction

ε w/f :

Energy parameter in the LJ potential, w for wall particles, f for fluid particles

λ i :

Thermal conductivity, i = ch for channel average and i = lay for local/layer average

η s,i :

Shear viscosity, i = ch for channel average and i = lay for local/layer average

ρ :

Fluid density

σ :

Length parameter in the LJ potential

\(\upsilon_{i}\) :

Speed velocity magnitude of atom i

References

  1. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434

    Article  Google Scholar 

  2. Wang J, Chen DR, Pui DYH (2006) Modeling of filtration efficiency of nanoparticles in standard filter media. J Nanopart Res 9:109–115

    Article  Google Scholar 

  3. Mantzalis D, Asproulis N, Drikakis D (2011) Filtering carbon dioxide through carbon nanotubes. Chem Phys Lett 506:81–85

    Article  Google Scholar 

  4. Sparreboom W, van den Berg A, Eijkel JCT (2010) Transport in nanofluidic systems: a review of theory and applications. N J Phys 12:015004

    Article  Google Scholar 

  5. Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  6. Gad-el-Hak M (2001) Flow physics in MEMS. Mol Ind 2:313–341

    Google Scholar 

  7. Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10:4638–4706

    Article  Google Scholar 

  8. Zhang W, Xia D (2007) Examination of nanoflow in rectangular slits. Mol Sim 33:1223–1228

    Article  MATH  MathSciNet  Google Scholar 

  9. Priezjev NV, Troian SM (2006) Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J Fluid Mech 554:25–46

    Article  MATH  Google Scholar 

  10. Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487

    Article  MathSciNet  Google Scholar 

  11. Werder T, Walther JH, Koumoutsakos P (2005) Hybrid atomistic–continuum method for the simulation of dense fluid flows. J Comput Phys 205:373–390

    Article  MATH  MathSciNet  Google Scholar 

  12. Kalweit M, Drikakis D (2010) On the behavior of fluidic material at molecular dynamics boundary conditions used in hybrid molecular-continuum simulations. Mol Sim 36:657–662

    Article  Google Scholar 

  13. Drikakis D, Asproulis N (2010) Multi-scale computational modelling of flow and heat transfer. Int J Numer Method Heat Fluid Flow 20:517–528

    Article  Google Scholar 

  14. Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A (2014) A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows. Microfluid Nanofluid 17:1011–1023

    Article  Google Scholar 

  15. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100:10175

    Article  Google Scholar 

  16. Whitby M, Cagnon L, Thanou M, Quirke N (2008) Enhanced fluid flow through nanoscale carbon pipes. Nano Lett 8:2632–2637

    Article  Google Scholar 

  17. Skoulidas A, Ackerman D, Johnson J, Sholl D (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89:185901

    Article  Google Scholar 

  18. Sofos F, Karakasidis TE, Liakopoulos A (2013) Parameters affecting slip length at the nanoscale. J Comput Theor Nanos 10:1–3

    Article  Google Scholar 

  19. Voronov RS, Papavassiliou DV, Lee LL (2008) Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res 47:2455–2477

    Article  Google Scholar 

  20. Vinogradova OI, Belyaev AV (2011) Wetting, roughness and flow boundary conditions. J Phys Condens Mater 23:184104

    Article  Google Scholar 

  21. Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:031504

    Article  Google Scholar 

  22. Asproulis N, Drikakis D (2010) Boundary slip dependency on surface stiffness. Phys Rev E 81:061503

    Article  Google Scholar 

  23. Sedmik RIP, Borghesani AF, Heeck K, Iannuzzi D (2013) Hydrodynamic force measurements under precisely controlled conditions: correlation of slip parameters with the mean free path. Phys Fluid 25:042103

    Article  Google Scholar 

  24. Baudry J, Charlaix E (2001) Experimental evidence for a large slip effect at a nonwetting fluid - solid interface. Langmuir 4:5232–5236

    Article  Google Scholar 

  25. Niavarani A, Priezjev NV (2010) Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys Rev E 81:011606

    Article  Google Scholar 

  26. Cheng YP, Teo CJ, Khoo BC (2009) Microchannel flows with superhydrophobic surfaces: effects of Reynolds number and pattern width to channel height ratio. Phys Fluid 21:122004

    Article  Google Scholar 

  27. Priezjev NV, Darhuber AA, Troian SM (2005) Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys Rev E 71:041608

    Article  Google Scholar 

  28. Yen T-H (2013) Molecular dynamics simulation of fluid containing gas in hydrophilic rough wall nanochannels. Microfluid Nanofluid. doi:10.1007/s10404-013-1299-1

    Google Scholar 

  29. Fernández G, Vrabec J, Hasse H (2004) A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilib 221:157–163

    Article  Google Scholar 

  30. Sengers JV (1985) Transport properties of fluids near critical points. Int J Thermophys 6:203–232

    Article  Google Scholar 

  31. Sofos F, Karakasidis T, Liakopoulos A (2009) Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int J Heat Mass Trans 52:735–743

    Article  MATH  Google Scholar 

  32. Hartkamp R, Ghosh A, Weinhart T, Luding S (2012) A study of the anisotropy of stress in a fluid confined in a nanochannel. J Chem Phys 137:044711

    Article  Google Scholar 

  33. Sofos F, Karakasidis TE, Liakopoulos A (2010) Effect of wall roughness on shear viscosity and diffusion in nanochannels. Int J Heat Mass Trans 53:3839–3846

    Article  MATH  Google Scholar 

  34. Diestler DJ, Schoen M, Hertzner AW, Cushman J (1991) Fluids in micropores. III. Self-diffusion in a slit-pore with rough hard walls. J Chem Phys 95:5432–5436

    Article  Google Scholar 

  35. Krekelberg WP, Shen VK, Errington JR, Truskett TM (2011) Impact of surface roughness on diffusion of confined fluids. J Chem Phys 135:154502

    Article  Google Scholar 

  36. Bugel M, Galliero G (2008) Thermal conductivity of the Lennard–Jones fluid: an empirical correlation. Chem Phys 352:249–257

    Article  Google Scholar 

  37. Ravi P, Murad S, Hanley HJM, Evans DJ (1992) The thermal conductivity coefficient of polyatomic molecules: benzene. Fluid Phase Equilib 76:249–257

    Article  Google Scholar 

  38. Schelling PK, Phillpot SR, Keblinski P (2002) Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B 65:144306

    Article  Google Scholar 

  39. Lai M, Kalweit M, Drikakis D (2010) Temperature and ion concentration effects on the viscosity of price-Brooks TIP3P water model. Mol Sim 36:801–804

    Article  Google Scholar 

  40. Sendner C, Horinek D, Bocquet L, Netz RR (2009) Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25:10768

    Article  Google Scholar 

  41. Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A (2012) Unified description of size effects of transport properties of liquids flowing in nanochannels. Int J Heat Mass Trans 55:5087–5092

    Article  Google Scholar 

  42. Priezjev NV (2007) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127:144708

    Article  Google Scholar 

  43. Sofos F, Karakasidis TE, Liakopoulos A (2012) Surface wettability effects on flow in rough wall nanochannels. Microfluid Nanofluid 12:25–31

    Article  Google Scholar 

  44. Karniadakis G, Beskok A, Aluru N (2002) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    Google Scholar 

  45. Cao BY, Sun J, Chen M, Guo ZY (2006) Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Phys Rev E 74:066311

    Article  Google Scholar 

  46. Maynes D, Jeffs K, Woolford B, Webb BW (2007) Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys Fluid 19:093603

    Article  Google Scholar 

  47. Yang SC (2006) Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid Nanofluid 2:501–511

    Article  Google Scholar 

  48. Gu X, Chen M (2011) Shape dependence of slip length on patterned hydrophobic surfaces. Appl Phys Lett 99:063101

    Article  Google Scholar 

  49. Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  Google Scholar 

Download references

Acknowledgments

This project was implemented under the “ARISTEIA II” Action of the “OPERATIONAL PROGRAMME EDUCATION AND LIFELONG LEARNING” and is co-founded by the European Social Fund (ESF) and National Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros E. Karakasidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofos, F., Karakasidis, T.E., Giannakopoulos, A.E. et al. Molecular dynamics simulation on flows in nano-ribbed and nano-grooved channels. Heat Mass Transfer 52, 153–162 (2016). https://doi.org/10.1007/s00231-015-1601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1601-8

Keywords

Navigation