Skip to main content
Log in

Modified Nafion polymer electrolyte membranes by γ-ray irradiation used in direct methanol fuel cells

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Modification of the commercial polymer electrolyte membrane (PEM) Nafion 117 by γ-ray irradiation to produce an improved proton exchange membrane for direct methanol fuel cells (DMFCs) was described. The Nafion 117 membrane was exposed under γ-ray irradiation circumstance with the irradiation doses from 103 to 105 Gy. Subsequently the properties of the membrane itself, in terms of swelling ratio, water uptake rate, proton conductivity and methanol permeability, together with the performance of its membrane electrode assembly (MEA) in DMFC were analyzed and contrasted with the untreated material. When the Nafion 117 membrane was exposed under γ-ray irradiation circumstance, the degradation and crosslinking reactions occurred at the same time. Specific scopes of the γ-ray irradiation dose may cause the membrane crosslinking, thus reduce the membrane swelling ratio and decrease the methanol crossover. By reducing the membrane swelling ratio and methanol permeation, the single DMFC with the modified Nafion 117 membrane produced reasonable power density performance as high as 32W/m2 under 2mol/L methanol solution at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldauf M, Preidel W. Starus of the development of a direct methanol fuel cell [J]. Journal of Power Sources, 1999, 84: 161–166.

    Article  Google Scholar 

  2. Kamarudin S K, Daud W R W, Ho S L, et al. Overview on the challenges and developments of microdirect methanol fuel cells (DMFC) [J]. Journal of Power Sources, 2007, 163: 743–754.

    Article  Google Scholar 

  3. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts: A review [J]. Journal of Power Sources, 2012, 208: 96–119.

    Article  Google Scholar 

  4. Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells [J]. Journal of Power Sources, 1999, 84: 70–74.

    Article  Google Scholar 

  5. Wei Y, Matar S, Shen L, et al. A novel membrane for DMFC-Na2Ti3O7 nanotubes/Nafion composite membrane: Performances studies [J]. International Journal of Hydrogen Energy, 2012, 37: 1857–1864.

    Article  Google Scholar 

  6. Maiti J, Kakati N, Lee S H, et al. PVA nano composite membrane for DMFC application [J]. Solid State Ionics, 2011, 201: 21–26.

    Article  Google Scholar 

  7. Haubold H G, Vad T, Jungbluth H, et al. Nano structure of Nafion: A SAXS study [J]. Electrochimica Acta, 2001, 46: 1559–1563.

    Article  Google Scholar 

  8. Kim Y J, Choi W C, Woo S I, et al. Proton conductivity and methanol permeation in Nafion/ORMOSIL prepared with various organic silanes [J]. Journal of Membrane Science, 2004, 238: 213–222.

    Article  Google Scholar 

  9. Liu J, Wang H, Cheng S, et al. Nafion-polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells [J]. Journal of Membrane Science, 2005, 246: 95–101.

    Article  Google Scholar 

  10. Zhong S, Cui X, Cai H, et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications [J]. Journal of Power Sources, 2007, 164: 65–72.

    Article  Google Scholar 

  11. Li L, Zhang Y. Chemical modification of Nafion membrane with 3,4-ethylenedioxythiophene for direct methanol fuel cell application [J]. Journal of Power Sources, 2008, 175: 256–260.

    Article  Google Scholar 

  12. Jaafar J, Ismail A F, Matsuura T, et al. Performance of SPEEK based polymer-nanoclay inorganic membrane for DMFC [J]. Journal of Membrane Science, 2011, 382: 202–211.

    Article  Google Scholar 

  13. Yang C C, Lee Y J. Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC) [J]. Thin Solid Films, 2009, 517: 4735–4740.

    Article  Google Scholar 

  14. Lakouraj M M, Tajbakhsh M, Mokhtary M. Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels [J]. Iranian Polymer Journal, 2005, 14(12): 1022–1030.

    Google Scholar 

  15. Yildirim M H, Schwarz A, Stamatialis D F, et al. Impregnated mambranes for direct methanol fuel cells at high methanol concentrations [J]. Journal of Membrane Science, 2009, 328: 127–133.

    Article  Google Scholar 

  16. Caracino P, Ballabio O, Colombo M, et al. Polymeric fluorine-free electrolyte for application in DMFC [J]. International Journal of Hydrogen Energy, 2009, 34: 4653–4660.

    Article  Google Scholar 

  17. Dimitrova P, Friedrich K A, Vogt B, et al. Transport properties of ionomer composite membranes for direct methanol fuel cells [J]. Journal of Electroanalytical Chemistry, 2002, 532: 75–83.

    Article  Google Scholar 

  18. Tricoli V. Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations [J]. Journal of The Electrochemical Society, 1998, 145(11): 3798–3801.

    Article  Google Scholar 

  19. Wu Hong, Wang Yu-xin, Wang Shi-chang. A new alcohol rejecting and proton conductive membrane in DMFC: PVA-blend-Nafion membranes [J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(3): 326–330 (in Chinese).

    Google Scholar 

  20. Antonucci P L, Arico A S, Creti P, et al. Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation [J]. Solid State Ionics, 1999, 125: 431–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-guang Suo  (索春光).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 21106060 ), the China Postdoctoral Science Fundation (No. 2012M511950), and the Yunnan Province Natural Science Foundation (Nos. 2010ZC015 and 2010ZC037)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suo, Cg., Zhang, Wb., Wang, H. et al. Modified Nafion polymer electrolyte membranes by γ-ray irradiation used in direct methanol fuel cells. J. Shanghai Jiaotong Univ. (Sci.) 17, 579–585 (2012). https://doi.org/10.1007/s12204-012-1328-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-012-1328-3

Key words

CLC number

Navigation