Skip to main content
Log in

Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on ethanol-crossover and the proton conductivity for DEFC application. A set of PWA–Nafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns, permeability, and proton conductivity were systematically characterized. The significant reduction in ethanol-crossover is observed with increasing PWA concentration in PWA–Nafion membranes, which is mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. The proton conductivity of the composites is enhanced with PWA concentration until 15 wt% due to an increase in hopping pathways, while higher PWA of 20 wt% leads to a conductivity decrease possibly due to the excessive particle aggregations that limit ion transports. These PWA–Nafion composites were implemented in prototype DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Li X, Faghri A (2013) J Power Sour 226:223–240. doi:10.1016/j.jpowsour.2012.10.061

    Article  Google Scholar 

  2. Sharaf OZ, Orhan MF (2014) Renew Sust Energy Rev 32:810–853. doi:10.1016/j.rser.2014.01.012

    Article  Google Scholar 

  3. Han I-S, Kho B-K, Cho S (2016) J Power Sour 304:244–254. doi:10.1016/j.jpowsour.2015.11.049

    Article  Google Scholar 

  4. Antonucci PL, Aricò AS, Cretì P, Ramunni E, Antonucci V (1999) Solid State Ion 125:431–437. doi:10.1016/S0167-2738(99)00206-4

    Article  Google Scholar 

  5. Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941. doi:10.1021/ja9844074

    Article  Google Scholar 

  6. Wen Z, Liu J, Li J (2008) Adv Mater 20:743–747. doi:10.1002/adma.200701578

    Article  Google Scholar 

  7. Zhou W, Zhou Z, Song S et al (2003) Appl Catal B 46:273–285. doi:10.1016/S0926-3373(03)00218-2

    Article  Google Scholar 

  8. Rousseau S, Coutanceau C, Lamy C, Léger JM (2006) J Power Sour 158:18–24. doi:10.1016/j.jpowsour.2005.08.027

    Article  Google Scholar 

  9. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Appl Energy 145:80–103. doi:10.1016/j.apenergy.2015.02.002

    Article  Google Scholar 

  10. Zakaria Z, Kamarudin SK, Timmiati SN (2016) Appl Energy 163:334–342. doi:10.1016/j.apenergy.2015.10.124

    Article  Google Scholar 

  11. Pethaiah SS, Arunkumar J, Ramos M, Al-Jumaily A, Manivannan N (2016) Bull Mater Sci. doi:10.1007/s12034-015-1130-6

    Google Scholar 

  12. Barbara L, Charya SA, Verna A (2009) Macromol Symp 277:177–189. doi:10.1002/masy.200950322

    Article  Google Scholar 

  13. Battirola LC, Schneider JF, Torriani ÍCL, Tremiliosi-Filho G, Rodrigues-Filho UP (2013) Int J Hydrog Energy 38:12060–12068. doi:10.1016/j.ijhydene.2013.06.126

    Article  Google Scholar 

  14. Maab H, Nunes SP (2010) J Power Sour 195:4036–4042. doi:10.1016/j.jpowsour.2010.01.005

    Article  Google Scholar 

  15. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  Google Scholar 

  16. Misono M (1987) Catal Rev 29:269–321. doi:10.1080/01614948708078072

    Article  Google Scholar 

  17. Amirinejad M, Madaeni SS, Navarra MA, Rafiee E, Scrosati B (2011) J Power Sour 196:988–998. doi:10.1016/j.jpowsour.2010.08.062

    Article  Google Scholar 

  18. Saccà A, Carbone A, Pedicini R et al (2008) Fuel Cells 8:225–235. doi:10.1002/fuce.200800009

    Article  Google Scholar 

  19. Bakangura E, Wu L, Ge L, Yang Z, Xu T (2016) Prog Polym Sci 57:103–152. doi:10.1016/j.progpolymsci.2015.11.004

    Article  Google Scholar 

  20. Horan JL, Genupur A, Ren H et al (2009) ChemSusChem 2:226–229. doi:10.1002/cssc.200800237

    Article  Google Scholar 

  21. Horan JL, Lingutla A, Ren H et al (2014) J Phys Chem C 118:135–144. doi:10.1021/jp4089657

    Article  Google Scholar 

  22. Motz AR, Horan JL, Kuo M-C, Herring AM (2015) ECS Trans 69:587–590. doi:10.1149/06917.0587ecst

    Article  Google Scholar 

  23. Xiang Y, Yang M, Zhang J, Lan F, Lu S (2011) J Membr Sci 368:241–245. doi:10.1016/j.memsci.2010.11.049

    Article  Google Scholar 

  24. Yang M, Lu S, Lu J, Jiang SP, Xiang Y (2010) Chem Commun 46:1434–1436. doi:10.1039/b912779h

    Article  Google Scholar 

  25. Malhotra S, Datta R (1997) J Electrochem Soc 144:L23–L26. doi:10.1149/1.1837420

    Article  Google Scholar 

  26. Lu JL, Fang QH, Li SL, Jiang SP (2013) J Membr Sci 427:101–107. doi:10.1016/j.memsci.2012.09.041

    Article  Google Scholar 

  27. Abouzari-lotf E, Jacob MV, Ghassemi H et al (2016) J Power Sour 326:482–489. doi:10.1016/j.jpowsour.2016.07.027

    Article  Google Scholar 

  28. Abouzari-lotf E, Nasef MM, Ghassemi H, Zakeri M, Ahmad A, Abdollahi Y (2015) ACS Appl Mater Interfaces 7:17008–17015. doi:10.1021/acsami.5b02268

    Article  Google Scholar 

  29. Carbone A, Casciola M, Cavalaglio S et al (2004) J N Mater Electrochem Syst 7:1–5

    Google Scholar 

  30. Xu W, Lu T, Liu C, Xing W (2005) Electrochim Acta 50:3280–3285. doi:10.1016/j.electacta.2004.12.014

    Article  Google Scholar 

  31. Mioč UB, Dimitrijević RŽ, Davidović M, Nedić ZP, Mitrović MM, Colomban P (1993) J Mater Sci 29:3705–3718. doi:10.1007/bf00357338

    Google Scholar 

  32. de Bonis C, Cozzi D, Mecheri B et al (2014) Electrochim Acta 147:418–425. doi:10.1016/j.electacta.2014.09.135

    Article  Google Scholar 

  33. Amirinejad M, Madaeni SS, Rafiee E, Amirinejad S (2011) J Membr Sci 377:89–98. doi:10.1016/j.memsci.2011.04.014

    Article  Google Scholar 

  34. Ramani V, Kunz HR, Fenton JM (2004) J Membr Sci 232:31–44. doi:10.1016/j.memsci.2003.11.016

    Article  Google Scholar 

  35. Ramani V, Kunz HR, Fenton JM (2005) Electrochim Acta 50:1181–1187. doi:10.1016/j.electacta.2004.08.015

    Article  Google Scholar 

  36. Lin C, Haolin T, Mu P (2012) Int J Hydrog Energy 37:4694–4698. doi:10.1016/j.ijhydene.2011.04.116

    Article  Google Scholar 

  37. Shang F, Li L, Zhang Y, Li H (2009) J Mater Sci 44:4383–4388. doi:10.1007/s10853-009-3658-6

    Article  Google Scholar 

  38. Wang J, Wasmus S, Savinell RF (1995) J Electrochem Soc 142:4218–4224. doi:10.1149/1.2048487

    Article  Google Scholar 

  39. Mahreni A, Mohamad AB, Kadhum AAH, Daud WRW, Iyuke SE (2009) J Membr Sci 327:32–40. doi:10.1016/j.memsci.2008.10.048

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Mid-career Researcher Program (No. 2010-0015063) and Conversion Research Center Program (No. 2011K000674) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) and Basic Science Research Program (No. 2015R1D1A1A01056983) through the NRF, Korea, funded by the Ministry of Education for the financial support. S.L. acknowledges Baylor University faculty startup funds that supported this research. The work at Argonne (S.H., data analysis and contribution to manuscript writing) was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The authors also acknowledge technical support from the K-LAB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunghwan Lee or Kwangsoo No.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S., Kim, S. et al. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid. J Mater Sci 52, 2400–2412 (2017). https://doi.org/10.1007/s10853-016-0534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0534-z

Keywords

Navigation