Abstract
Halide perovskites have attracted tremendous attention as semiconducting materials for various optoelectronic applications. The functional metal-halide octahedral units and their spatial arrangements play a key role in the optoelectronic properties of these materials. At present, most of the efforts for material exploration focus on substituting the constituent elements of functional octahedral units, whereas designing the spatial arrangement of the functional units has received relatively little consideration. In this work, via a global structure search based on density functional theory (DFT), we discovered a metastable three-dimensional honeycomb-like perovskite structure with the functional octahedral units arranged through mixed edge- and corner-sharing. We experimentally confirmed that the honeycomb-like perovskite structure can be stabilized by divalent molecular cations with suitable size and shape, such as 2,2′-bisimidazole (BIM). DFT calculations and experimental characterizations revealed that the honeycomb-like perovskite with the formula of BIMPb2I6, synthesized through a solution process, exhibits high electronic dimensionality, a direct allowed bandgap of 2.1 eV, small effective masses for both electrons and holes, and high optical absorption coefficients, which indicates a significant potential for optoelectronic applications. The employed combination of DFT and experimental study provides an exemplary approach to explore prospective optoelectronic semiconductors via spatially arranging functional units.

References
Kim J Y, Lee J W, Jung H S, Shin H, Park N G. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867–7918
Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
Yu X, Tsao H N, Zhang Z, Gao P. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Advanced Optical Materials, 2020, 8(21): 2001095
Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
Wang H P, Li S, Liu X, Shi Z, Fang X, He J H. Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): e2003309
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9 (9): 687–692
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–124
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
Yan C, Lin K, Lu J, Wei Z. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13(3): 282–290
Huang J, Yuan Y, Shao Y, Yan Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews. Materials, 2017, 2(7): 17042
Xiao Z, Yan Y. Progress in theoretical study of metal halide perovskite solar cell materials. Energy Materials, 2017, 7(22): 1701136
Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27): 4653–4658
Meng W, Wang X, Xiao Z, Wang J, Mitzi D B, Yan Y. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. Journal of Physical Chemistry Letters, 2017, 8(13): 2999–3007
Umari P, Mosconi E, De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Scientific Reports, 2014, 4(1): 4467
Green M A, Jiang Y, Soufiani A M, Ho-Baillie A. Optical properties of photovoltaic organic-inorganic lead halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(23): 4774–4785
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
Yin W J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104 (6): 063903
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2017, 2(9): 2071–2083
Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
Chen K, Li L. Ordered structures with functional units as a paradigm of material design. Advanced Materials, 2019, 31(32): e1901115
Xiao Z, Meng W, Wang J, Mitzi D B, Yan Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
Brgoch J, Lehner A J, Chabinyc M L, Seshadri R. Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. Journal of Physical Chemistry C, 2014, 118(48): 27721–27727
Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design. Chemical Reviews, 2016, 116(7): 4558–4596
Kahwagi R F, Thornton S T, Smith B, Koleilat G I. Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13(3): 196–224
Raptopoulou C P, Terzis A, Mousdis G A, Papavassiliou G C. Preparation, structure and optical properties of [CH3SC (NH2)2]3SnI5, [CH3SC(NH2)2][HSC(NH2)2]SnBr4, (CH3C5H4NCH3)PbBr3, and [C6H5CH2SC(NH2)2]4Pb3I10. Zeitschrift für Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, Biochemie, Biophysik, Biologie, 2002, 57(6): 645–650
Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840–845
Zhang Y, Saidaminov M I, Dursun I, Yang H, Murali B, Alarousu E, Yengel E, Alshankiti B A, Bakr O M, Mohammed O F. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. Journal of Physical Chemistry Letters, 2017, 8(5): 961–965
Lin H, Zhou C, Tian Y, Siegrist T, Ma B. Low-dimensional organometal halide perovskites. ACS Energy Letters, 2018, 3(1): 54–62
Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bidoped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
Li J, Tan Z, Hu M, Chen C, Luo J, Li S, Gao L, Xiao Z, Niu G, Tang J. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
Tan Z, Chu Y, Chen J, Li J, Ji G, Niu G, Gao L, Xiao Z, Tang J. Lead-free perovskite variant solid solutions Cs2Sn1xTexCl6: bright luminescence and high anti-water stability. Advanced Materials, 2020, 32(32): e2002443
Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Advanced Materials, 2019, 31(47): e1803792
Zhao X G G, Yang D, Ren J C C, Sun Y, Xiao Z, Zhang L. Rational design of halide double perovskites for optoelectronic applications. Joule, 2018, 2(9): 1662–1673
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356–1368
Han B, Cai B, Shan Q, Song J, Li J, Zhang F, Chen J, Fang T, Ji Q, Xu X, Zeng H. Stable, efficient red perovskite light-emitting diodes by (α,δ)-CsPbI3 phase engineering. Advanced Functional Materials, 2018, 28(47): 1804285
Chen K, Zhong Q, Chen W, Sang B, Wang Y, Yang T, Liu Y, Zhang Y, Zhang H. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 2019, 29(24): 1900991
Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Letters, 2017, 2(10): 2219–2227
Woodward P M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica. Section B, Structural Science, 1997, 53(1): 32–43
Umeyama D, Leppert L, Connor B A, Manumpil M A, Neaton J B, Karunadasa H I. Expanded analogs of three-dimensional lead-halide hybrid perovskites. Angewandte Chemie International Edition, 2020, 59(43): 19087–19094
Tang Z, Guan J, Guloy A M. Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations. Journal of Materials Chemistry, 2001, 11(2): 479–482
Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A, Angelis F D. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
Cortecchia D, Neutzner S, Srimath Kandada A R, Mosconi E, Meggiolaro D, De Angelis F, Soci C, Petrozza A. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
Yaffe O, Guo Y, Tan L Z, Egger D A, Hull T, Stoumpos C C, Zheng F, Heinz T F, Kronik L, Kanatzidis M G, Owen J S, Rappe A M, Pimenta M A, Brus L E. Local polar fluctuations in lead halide perovskite crystals. Physical Review Letters, 2017, 118(13): 136001
Xiao Z, Meng W, Saparov B, Duan H S, Wang C, Feng C, Liao W, Ke W, Zhao D, Wang J, Mitzi D B, Yan Y. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density functional theory study. Journal of Physical Chemistry Letters, 2016, 7(7): 1213–1218
Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
Shi J, Zhang H, Li Y, Jasieniak J J, Li Y, Wu H, Luo Y, Li D, Meng Q. Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy & Environmental Science, 2018, 11(6): 1460–1469
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
Wang Y, Lv J, Zhu L, Ma Y. Crystal structure prediction via particle-swarm optimization. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(9): 094116
Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Computer Physics Communications, 2012, 183 (10): 2063–2070
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865–3868
Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108: 1–5
Zheng Q. VASP_TDM, https://github.com/QijingZheng/VASP_TDM, 2016
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118(18): 8207–8215
Heyd J, Scuseria G E, Ernzerhof M. Erratum: “Hybrid functionals based on a screened Coulomb potential”. Journal of Chemical Physics, 2006, 124(21): 219906
Fonari A, Stauffer S. VASP_RAMAN.PY, https://github.com/raman-sc/VASP, 2013
Matsumoto S, Watanabe M, Akazome M. Incrementing Stokes shifts through the formation of 2,2′-biimidazoldiium salts. Organic Letters, 2018, 20(12): 3613–3617
Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41(3): 653–658
Acknowldgements
This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51972130), Startup Fund of Huazhong University of Science and Technology, and Director Fund of Wuhan National Laboratory for Optoelectronics. The authors thank Prof. Kezhao Du in Fujian Normal University, China for the UV-Vis measurement, Yunpeng Yao in Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China for providing experimental assistance toward photoresponse measurement, and Prof. Zhijun Ning in ShanghaiTech University, China for supporting the early-stage exploration.
Author information
Authors and Affiliations
Corresponding author
Additional information
Pengfei Fu received his Ph.D. degree in Physical Chemistry from ShanghaiTech University, China in 2019. He is currently working as a postdoctoral researcher with Prof. Zewen Xiao’s group at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China. His research mainly focuses on rational design and synthesis of hybrid metal halides for optoelectronic applications.
Sanlue Hu received his Bachelor’s and Master’s degrees from Wuhan University of Technology, China in 2015 and 2018, respectively. He is currently a Ph.D. candidate in Prof. Zewen Xiao’s group at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China. His research mainly focuses on the theoretical understanding and design of novel optoelectronic semiconductors.
Zewen Xiao received his Ph.D. degree in Materials Science from Tokyo Institute of Technology, Japan in 2015, under the supervision of Prof. Toshio Kamiya and Prof. Hideo Hosono. He worked as a postdoctoral fellow in Prof. Yanfa Yan’s group at The University of Toledo, USA from 2015 to 2016. Then, he worked as a specially appointed assistant professor at Tokyo Institute of Technology from 2016 to 2018. He joined Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China as a professor in 2018. His group focuses on the rational design and experimental realization of novel optoelectronic semiconductors. He has published 60 papers with 3500 citations.
Supporting Information
12200_2021_1227_MOESM1_ESM.pdf
Material exploration via designing the spatial arrangement of functional octahedral units: a case study of lead halide perovskites
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fu, P., Hu, S., Tang, J. et al. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Front. Optoelectron. 14, 252–259 (2021). https://doi.org/10.1007/s12200-021-1227-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12200-021-1227-z
Keywords
- lead halide perovskite
- electronic dimensionality
- functional octahedral units
- optoelectronic properties
- photodetector