Skip to main content
Log in

Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Emerging applications based on optical beams carrying orbital angular momentum (OAM) will likely require photonic integrated devices and circuits for miniaturization, improved performance and enhanced functionality. This paper reviews the state-of-the art in the field of OAM of light, reports recent developments in silicon integrated OAM emitters, and discusses the applications potentials and challenges in silicon integrated OAM devices which can be used in future OAM based optical communications systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125

    Article  MathSciNet  Google Scholar 

  2. Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394(6691): 348–350

    Article  Google Scholar 

  3. Humblet J. Sur le moment d’impulsion d’une onde electromagntique. Physica A, 1943, 10(7): 585–603

    MathSciNet  MATH  Google Scholar 

  4. Allen L, BeijersbergenMW, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre- Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189

    Article  Google Scholar 

  5. Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, 112(5–6): 321–327

    Article  Google Scholar 

  6. Bazhenov V Y, Vasnetsov M V, Soskin M S. Laser-beams with screw dislocations in their wavefronts. JETP Letters, 1990, 52(8): 429–431

    Google Scholar 

  7. Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J, Kloosterboer J G, ’t Hooft G W. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 2004, 43(3): 688–694

    Article  Google Scholar 

  8. He H, Friese ME J, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829

    Article  Google Scholar 

  9. O’Neil A T, MacVicar I, Allen L, Padgett MJ. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601

    Article  Google Scholar 

  10. Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914

    Article  Google Scholar 

  11. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456

    Article  Google Scholar 

  12. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901–153904

    Article  Google Scholar 

  13. Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Applied Physics Letters, 2006, 88(22): 221102

    Article  Google Scholar 

  14. Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230

    Article  Google Scholar 

  15. McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Applied Optics, 1998, 37(3): 469–472

    Article  Google Scholar 

  16. Kumar R, Singh Mehta D, Sachdeva A, Garg A, Senthilkumaran P, Shakher C. Generation and detection of optical vortices using all fiber-optic system. Optics Communications, 2008, 281(13): 3414–3420

    Article  Google Scholar 

  17. Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics, 2008, 4(4): 282–286

    Article  Google Scholar 

  18. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316

    Article  Google Scholar 

  19. Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Physical Review Letters, 2002, 88(1): 013601

    Article  Google Scholar 

  20. Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, threedimensional entanglement for quantum communication. Physical Review Letters, 2002, 89(24): 240401

    Article  Google Scholar 

  21. Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25 Pt 1): 257901

    Article  Google Scholar 

  22. Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501

    Article  Google Scholar 

  23. Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Applied Physics Letters, 2007, 90(26): 261114

    Article  Google Scholar 

  24. Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 2009, 103(1): 013601

    Article  Google Scholar 

  25. Nagali E, Sciarrino F, De Martini F, Piccirillo B, Karimi E, Marrucci L, Santamato E. Polarization control of single photon quantum orbital angular momentum states. Optics Express, 2009, 17(21): 18745–18759

    Article  Google Scholar 

  26. Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(12): 720–723

    Article  Google Scholar 

  27. Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877

    Article  Google Scholar 

  28. Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143

    Article  Google Scholar 

  29. Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905

    Article  Google Scholar 

  30. Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877

    Article  Google Scholar 

  31. Bomzon Z, Kleiner V, Hasman E. Pancharatnam—Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters, 2001, 26(18): 1424–1426

    Article  Google Scholar 

  32. Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220

    Article  Google Scholar 

  33. Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183

    Article  Google Scholar 

  34. Fontaine N K, Doerr C R, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference, 2012, paper OTu1l.2

    Google Scholar 

  35. Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496

    Article  Google Scholar 

  36. Bozinovic N, Yue Y, Ren Y, TurM, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548

    Article  Google Scholar 

  37. Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402

    Article  Google Scholar 

  38. Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

    Article  Google Scholar 

  39. Matsko A B, Savchenkov A A, Strekalov D, Maleki L. Whispering gallery resonators for studying orbital angular momentum of a photon. Physical Review Letters, 2005, 95(14): 143904

    Article  Google Scholar 

  40. Cai X, Huang D, Zhang X. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Optics Express, 2006, 14(23): 11304–11311

    Article  Google Scholar 

  41. Yue Y, Huang H, Ahmed N, Yan Y, Ren Y, Xie G, Rogawski D, Tur M, Willner A E. Reconfigurable switching of orbital-angularmomentum- based free-space data channels. Optics Letters, 2013, 38(23): 5118–5121

    Article  Google Scholar 

  42. Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362

    Article  Google Scholar 

  43. Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultracompact integrated vortex emitters. Nature Communications, 2014, 5: 4856

    Article  Google Scholar 

  44. Li H, Strain MJ, Meriggi L, Chen L, Zhu J, Cicek K, Wang J, Cai X, Sorel M, Thompson M G, Yu S. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams. Applied Physics Letters, 2015, 107(5): 051102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlun Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Strain, M., Yu, S. et al. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications. Front. Optoelectron. 9, 518–525 (2016). https://doi.org/10.1007/s12200-016-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0572-9

Keywords

Navigation