Skip to main content
Log in

Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as various printing methods, the fabrication of high performance CZTSSe solar cell could be applied to mass production with extremely low manufacturing cost and high yield speed. To better fulfill this goal, environmentalfriendly inks/solutions are optimum for further reducing the capital investment on instrument, personnel and environmental safety. In this review, we summarized the recent development of CZTSSe thin films solar cells fabricated with benign solvents, such as water and ethanol. The disperse system can be classified to the true solution (consisting of molecules) and the colloidal suspension (consisting of nanoparticles).Three strategies for stabilization (i.e., physical method, chemical capping and selfstabilization) are proposed to prepare homogeneous and stable colloidal nanoinks. The one-pot self-stabilization method stands as an optimum route for preparing benign inks for its low impurity involvement and simple procedure. As-prepared CZTSSe inks would be deposited onto substrates to form thin films through spin-coating, spraying, electrodeposition or successive ionic layer adsorption and reaction (SILAR) method, followed by annealing in a chalcogen (S- or Se-containing) atmosphere to fabricate absorber. The efficiency of CZTSSe solar cell fabricated with benign solvents can also be enhanced by constituent adjustments, doping, surface treatments and blocking layers modifications, etc., and the deeper research will promise it a comparable performance to the nonbenign CZTSSe systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4- based thin film solar cells by using preferential etching technique. Applied Physics Express, 2008, 1(4): 041201

    Article  Google Scholar 

  2. Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock HW. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 2011, 19(1): 93–96

    Article  Google Scholar 

  3. Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): doi: 10.1002/aenm.201301465

    Google Scholar 

  4. Zhang H, Hu B, Sun L, Hovden R, Wise FW, Muller D A, Robinson R D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Letters, 2011, 11 (12): 5356–5361

    Article  Google Scholar 

  5. Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15): 5949–5952

    Article  Google Scholar 

  6. Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H. Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124: 55–60

    Article  Google Scholar 

  7. Vigil-Galán O, Courel M, Espindola-Rodriguez M, Izquierdo-Roca V, Saucedo E, Fairbrother A. Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053137

    Article  Google Scholar 

  8. Yeh M Y, Lee C C, Wuu D S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009, 52(1): 65–68

    Article  Google Scholar 

  9. Jiang M, Lan F, Yan X, Li G. Cu2ZnSn(S1-x Sex)4thin film solar cells prepared by water-based solution process. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(3): 223–227

    Article  Google Scholar 

  10. Jiang M, Li Y, Dhakal R, Thapaliya P, Mastro M, Caldwell J, Kub F, Yan X. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 2011, 1(1): 019501

    Article  Google Scholar 

  11. Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells. Green Chemistry, 2015, 17(2): 1269–1275

    Article  Google Scholar 

  12. Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009, 93(8): 1230–1237

    Article  Google Scholar 

  13. Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng Y B, Tang J. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn(S,Se)4 solar cells. Chemistry of Materials, 2014, 26(11): 3573–3578

    Article  Google Scholar 

  14. Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy & Environmental Science, 2012, 5(1): 5340–5345

    Article  Google Scholar 

  15. Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4(28): 14655–14662

    Article  Google Scholar 

  16. Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. 8.6% efficient CZTSSe solar cells sprayed from water–ethanol CZTS colloidal solutions. Journal of Physical Chemistry Letters, 2014, 5(21): 3763–3767

    Article  Google Scholar 

  17. Li Z, Ho J C W, Lee K K, Zeng X, Zhang T, Wong L H, Lam Y M. Environmentally friendly solution route to kesterite Cu2ZnSn(S,Se)4 thin films for solar cell applications. RSC Advances, 2014, 4(51): 26888–26894

    Article  Google Scholar 

  18. Chen G, Yuan C, Liu J, Huang Z, Chen S, Liu W, Jiang G, Zhu C. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell. Journal of Power Sources, 2015, 276: 145–152

    Article  Google Scholar 

  19. van Embden J, Chesman A S, Della Gaspera E, Duffy NW, Watkins S E, Jasieniak J J. Cu2ZnSnS4xSe4(1–x ) solar cells from polar nanocrystal inks. Journal of the American Chemical Society, 2014, 136(14): 5237–5240

    Article  Google Scholar 

  20. Kang C C, Chen H F, Yu T C, Lin T C. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 24–26

    Article  Google Scholar 

  21. Kush P, Ujjain S K, Mehra N C, Jha P, Sharma R K, Deka S. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. Chemphyschem: a European journal of Chemical Physics and Physical Chemistry, 2013, 14(12): 2793–2799

    Article  Google Scholar 

  22. Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535: 39–43

    Article  Google Scholar 

  23. Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14 (11): 3847–3850

    Article  Google Scholar 

  24. Hsu K C, Liao J D, Chao L M, Fu Y S. Fabrication and characterization of Cu2ZnSnS4 powders by a hydrothermal method. Japanese Journal of Applied Physics, 2013, 52(6R): 061202

    Article  Google Scholar 

  25. Camara S M, Wang L, Zhang X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 2013, 24(49): 495401

    Article  Google Scholar 

  26. Jiang H, Dai P, Feng Z, Fan W, Zhan J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, 2012, 22(15): 7502–7506

    Article  Google Scholar 

  27. Tiong V T, Bell J, Wang H. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals- a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5: 438–446

    Article  Google Scholar 

  28. Tiong V T, Zhang Y, Bell J, Wang H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16(20): 4306–4313

    Article  Google Scholar 

  29. Zhao Y, Zhou W H, Jiao J, Zhou Z J, Wu S X. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 174–176

    Article  Google Scholar 

  30. Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 2009, 324(5933): 1417–1420

    Article  Google Scholar 

  31. Kovalenko MV, Bodnarchuk MI, Zaumseil J, Lee J S, Talapin D V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. Journal of the American Chemical Society, 2010, 132(29): 10085–10092

    Article  Google Scholar 

  32. Jiang C, Lee J S, Talapin D V. Soluble precursors for CuInSe2, CuIn1–x GaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. Journal of the American Chemical Society, 2012, 134(11): 5010–5013

    Article  Google Scholar 

  33. Zhou H, Duan H S, Yang W, Chen Q, Hsu C J, Hsu WC, Chen C C, Yang Y. Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy & Environmental Science, 2014, 7(3): 998–1005

    Article  Google Scholar 

  34. Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green M A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(2): 500–509

    Article  Google Scholar 

  35. Kim S, Kim J. Effect of selenization on sprayed Cu2ZnSnS4 thin film solar cell. Thin Solid Films, 2013, 547: 178–180

    Article  Google Scholar 

  36. Scragg J J, Berg D M, Dale P J A. 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010, 646(1–2): 52–59

    Article  Google Scholar 

  37. Araki H, Kubo Y, Mikaduki A, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K, Takeuchi A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 996–999

    Article  Google Scholar 

  38. Scragg J J, Dale P J, Peter L M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 2008, 10(4): 639–642

    Article  Google Scholar 

  39. Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealin88g route. Thin Solid Films, 2009, 517(7): 2481–2484

    Article  Google Scholar 

  40. Iljina J, Zhang R, Ganchev M, Raadik T, Volobujeva O, Altosaar M, Traksmaa R, Mellikov E. Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films, 2013, 537: 85–89

    Article  Google Scholar 

  41. Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock H W, Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009, 517 (7): 2511–2514

    Article  Google Scholar 

  42. Wang Y, Ma J, Liu P, Chen Y, Li R, Gu J, Lu J, Yang S, Gao X. Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route. Materials Letters, 2012, 77: 13–16

    Article  Google Scholar 

  43. Pawar S M, Pawar B S, Moholkar A V, Choi D S, Yun J H, Moon J H, Kolekar S S, Kim J H. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010, 55(12): 4057–4061

    Article  Google Scholar 

  44. Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, Kötschau I, Schock HW. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from coelectroplated Cu–Zn–Sn precursors. Thin Solid Films, 2009, 517 (7): 2465–2468

    Article  Google Scholar 

  45. Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 2010, 94(2): 207–211

    Article  Google Scholar 

  46. Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction echnique: characterization and application. Electrochimica Acta, 2012, 66: 216–221

    Article  Google Scholar 

  47. Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73(6): 735–740

    Article  Google Scholar 

  48. Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 2012, 47(2): 302–307

    Article  Google Scholar 

  49. Shinde N M, Deshmukh P R, Patil S V, Lokhande C D. Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Materials Research Bulletin, 2013, 48(5): 1760–1766

    Article  Google Scholar 

  50. Patel K, Shah D V, Kheraj V. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR. Journal of Alloys and Compounds, 2015, 622: 942–947

    Article  Google Scholar 

  51. Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258(19): 7678–7682

    Article  Google Scholar 

  52. Gao C, Shen H, Jiang F, Guan H. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261: 189–192

    Article  Google Scholar 

  53. Wangperawong A, King J S, Herron S M, Tran B P, Pangan-Okimoto K, Bent S F. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488–2492

    Article  Google Scholar 

  54. Moriya K, Tanaka K, Uchiki H. Characterization of Cu2ZnSnS4thin films prepared by photo-chemical deposition. Japanese Journal of Applied Physics, 2005, 44(1B): 715–717

    Article  Google Scholar 

  55. Shinde N M, Lokhande C D, Kim J H, Moon J H. Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. Journal of Photochemistry and Photobiology A Chemistry, 2012, 235: 14–20

    Article  Google Scholar 

  56. Chen S, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522–1539

    Article  Google Scholar 

  57. Hergert F, Hock R. Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films, 2007, 515(15): 5953–5956

    Article  Google Scholar 

  58. Shin SW, Pawar SM, Park C Y, Yun J H, Moon J H, Kim J H, Lee J Y. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12): 3202–3206

    Article  Google Scholar 

  59. Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421–1436

    Article  Google Scholar 

  60. Polizzotti A, Repins I L, Noufi R, Wei S H, Mitzi D B. The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 2013, 6(11): 3171–3182

    Article  Google Scholar 

  61. Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, Seuret-Jiménez D, Titsworth M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. Journal of Materials Science Materials in Electronics, 2015, 26(8): 5562–5573

    Article  Google Scholar 

  62. Chen S, Gong X G, Walsh A, Wei S H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010, 96(2): 021902

    Article  Google Scholar 

  63. Vigil-Galán O, Espíndola-Rodríguez M, Courel M, Fontané X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Pérez-Rodríguez A. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117: 246–250

    Article  Google Scholar 

  64. Wen Q, Li Y, Yan J, Wang C. Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Materials Letters, 2015, 140: 16–19

    Article  Google Scholar 

  65. Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001–1004

    Article  Google Scholar 

  66. Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y, Liu F. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105(22): 223903

    Article  Google Scholar 

  67. Johnson M, Baryshev S V, Thimsen E, Manno M, Zhang X, Veryovkin I V, Leighton C, Aydil E S. Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films. Energy & Environmental Science, 2014, 7(6): 1931–1938

    Article  Google Scholar 

  68. Zhou H, Song T B, Hsu WC, Luo S, Ye S, Duan H S, Hsu C J, Yang W, Yang Y. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Journal of the American Chemical Society, 2013, 135(43): 15998–16001

    Article  Google Scholar 

  69. Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A, Yoshino K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104(15): 152101

    Article  Google Scholar 

  70. Todorov T, Mitzi D B. Direct liquid coating of chalcopyrite lightabsorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17–28

    Article  Google Scholar 

  71. Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu X, Xue D J, Cheng Y B, Song H, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solutionprocessed Cu2ZnSn(S,Se)4 solar cells. Scientific Reports, 2014, 4: 6288–6296

    Article  Google Scholar 

  72. Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411

    Article  Google Scholar 

  73. Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013, 102(9): 091907

    Article  Google Scholar 

  74. Cui H, Lee C Y, Li W, Liu X, Wen X, Hao X. Improving efficiency of evaporated Cu2ZnSnS4 thin film solar cells by a thin Ag intermediate layer between absorber and back contact. International Journal of Photoenergy, 2015, 170507

    Google Scholar 

  75. Liu X, Cui H, Li W, Song N, Liu F, Conibeer G, Hao X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(12): 966–970

    Article  Google Scholar 

  76. Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S. Thin film solar cell with 8.4%power conversion efficiency using an earthabundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72–76

    Article  Google Scholar 

  77. Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/ Mo interface. Applied Physics Letters, 2014, 104(5): 051105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhong or Jiang Tang.

Additional information

Cheng Zhang was an undergraduate student at Wuhan National Laboratory for Optoelectronics (WNLO) at Huazhong University of Science and Technology. He obtained his bachelor degree under the supervision of Dr. Jie Zhong and Prof. Jiang Tang from 2014 to 2015. He will start his Ph.D. study in Prof. Jian Lin’s group at the Department of Mechanical & Aerospace Engineering at University of Missouri-Columbia. His research focuses on advanced materials synthesis and processing.

Jie Zhong currently is an associate professor at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology (WHUT). Before that, he worked at Wuhan National Laboratory for Optoelectronics (WNLO) at Huazhong University of Science and Technology (HUST) as a postdoctoral researcher and lecturer. He received his Ph.D. degree in materials science and engineering in Central South University (CSU) in 2012. From 2008 to 2012, he conducted research as a visiting student and later as a research assistant at Department of Materials Engineering in Monash University. Jie’s research interest is now focused on synthesizing green inks of semiconductors (copper zinc tin sulfoselenide, perovskite and etc.), and producing photovoltaic and sensing devices via printing routes.

Jiang Tang is now a professor at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology. He received his bachelor’s degree from University of Science and Technology of China and his Ph.D. degree from University of Toronto in the Department of Materials Science and Engineering under the supervision of Prof. Edward H. Sargent. His research interest is chalcogenide thin film solar cells and colloidal quantum dot optoelectronic devices. He is the research pioneer of antimony selenide (Sb2Se3) thin film photovoltaics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhong, J. & Tang, J. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents. Front. Optoelectron. 8, 252–268 (2015). https://doi.org/10.1007/s12200-015-0539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-015-0539-2

Keywords

Navigation