Skip to main content
Log in

Simulation of 40 Gbit/s NRZ to RZ format conversion based on sum-frequency generation using a PPLN loop mirror

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A novel scheme of all-optical format conversion is proposed and simulated from non-return-to-zero (NRZ) to return-to-zero (RZ) at 40 Gbit/s by exploiting sum-frequency generation (SFG) in a periodically poled lithium niobate loop mirror (PPLN-LM). The conversion performance is analyzed, including eye diagrams, conversion efficiency, pulse width ratio, duty cycle, Q-factor, extinction ratio, and tunability. It is found that the signal wavelength can be tuned in a wide wavelength range by properly changing the pump wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bigo S, Desurvire E, Gauchard S, et al. Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems. Electronics Letters, 1994, 30(12): 984–985

    Article  Google Scholar 

  2. Chow C W, Wong C S, Tsang H K. All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking. Optics Communications, 2002, 209(4–6): 329–334

    Article  Google Scholar 

  3. Xu L, Wang B C, Baby V, et al. All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter. IEEE Photonics Technology Letters, 2003, 15(2): 308–310

    Article  Google Scholar 

  4. Langrock C, Kumar S, McGeehan J E, et al. All-optical signal processing using x(2) nonlinearities in guided-wave devices. Journal of Lightwave Technology, 2006, 24(7): 2579–2592

    Article  Google Scholar 

  5. Xu C Q, Okayama H, Kawahara M. 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide. Applied Physics Letters, 1993, 63(26): 3559–3561

    Article  Google Scholar 

  6. Chou M H, Brener I, Fejer M M, et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics Technology Letters, 1999, 11(6): 653–655

    Article  Google Scholar 

  7. Xu C Q, Bracken J, Chen B. Intracavity wavelength conversions employing a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier. Journal of the Optical Society of America B-Optical Physics, 2003, 20(10): 2142–2149

    Article  Google Scholar 

  8. Min Y H, Lee J H, Lee Y L, et al. Tunable all-optical wavelength conversion of 5ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide. In: Tech Dig OFC’03, 2003, 2: 767–768

    Google Scholar 

  9. Xu C Q, Chen B. Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation. Optics Letters, 2004, 29(3): 292–294

    Article  Google Scholar 

  10. Yu S, Gu W. Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions. IEEE Journal of Quantum Electronics, 2004, 40(11): 1548–1554

    Article  Google Scholar 

  11. Lee Y L, Yu B-A, Jung C, et al. All-opticalwavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide. Optics Express, 2005, 13(8): 2988–2993

    Article  Google Scholar 

  12. Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG + DFG) in LiNbO3 waveguides. Optics Express, 2005, 13(19): 7405–7414

    Article  Google Scholar 

  13. Wang Jian, Sun Junqiang, Kurz J R, et al. Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser. IEEE Photonics Technology Letters, 2006, 18(20): 2093–2095

    Article  Google Scholar 

  14. Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Flexible alloptical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide. Applied Physics B-Lasers and Optics, 2006, 83(4): 543–548

    Article  Google Scholar 

  15. Wang Jian, Sun Junqiang. Observation of 40-Gbit/s tunable wavelength down- and up-conversions based on cascaded second- order nonlinearity in LiNbO3 waveguides. Optical Engineering, 2007, 46(2): 025005

    Article  Google Scholar 

  16. Wang Jian, Sun Junqiang, Zhang Xinliang, et al. Experimental observation of tunable wavelength down- and up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide. Optics Communications, 2007, 269(1): 179–187

    Article  Google Scholar 

  17. Sun Junqiang, Huang Dexiu, Liu Deming. Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides. Optics Communications, 2006, 259(1): 321–327

    Article  Google Scholar 

  18. Wang Jian, Sun Junqiang, Sun Qizhen. Experimental observation of a 1.5 mm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Optics Letters, 2006, 31(11): 1711–1713

    Article  Google Scholar 

  19. Wang Jian, Sun Junqiang, Sun Qizhen. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Optics Express, 2007, 15(4): 1690–1699

    Article  Google Scholar 

  20. Wang Jian, Sun Junqiang, Sun Qizhen. Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technology Letters, 2007, 19(8): 541–543

    Article  Google Scholar 

  21. Sun Junqiang, Wang Jian. Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides. Optics Communications, 2006, 267(1): 187–192

    Article  Google Scholar 

  22. Lee Y L, Yu B-A, Eom T J, et al. All-optical ANDand NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Optics Express, 2006, 14(7): 2776–2782

    Article  Google Scholar 

  23. Wang Jian, Sun Junqiang. NOLM-based all-optical 40 Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide. In: Proceedings of SPIE, 2005, 6021: 60212H

    Google Scholar 

  24. Wang Jian, Sun Junqiang, Sun Qizhen, et al. Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation. Optics Express, 2007, 15(2): 583–588

    Article  Google Scholar 

  25. Wang Jian, Sun Junqiang, Sun Qizhen. Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror. Optics Letters, 2007, 32(11): 1477–1479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sun, J., Zhang, W. et al. Simulation of 40 Gbit/s NRZ to RZ format conversion based on sum-frequency generation using a PPLN loop mirror. Front. Optoelectron. China 2, 9–14 (2009). https://doi.org/10.1007/s12200-008-0074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-008-0074-5

Keywords

Navigation